Wind Turbine Technology

Course No: R04-009
Credit: 4 PDH

Elie Tawil, P.E., LEED AP

Continuing Education and Development, Inc.
22 Stonewall Court
Woodcliff Lake, NJ 07677

P: (877) 322-5800
info@cedengineering.com
Chapter 2. Wind Turbine Technology

Today’s wind technology has enabled wind to enter the electric power mainstream. Continued technological advancement would be required under the 20% Wind Scenario.

2.1 INTRODUCTION

Current turbine technology has enabled wind energy to become a viable power source in today’s energy market. Even so, wind energy provides approximately 1% of total U.S. electricity generation. Advancements in turbine technology that have the potential to increase wind energy’s presence are currently being explored. These areas of study include reducing capital costs, increasing capacity factors, and mitigating risk through enhanced system reliability. With sufficient research, development, and demonstration (RD&D), these new advances could potentially have a significant impact on commercial product lines in the next 10 years.

A good parallel to wind energy evolution can be derived from the history of the automotive industry in the United States. The large-scale production of cars began with the first Model T production run in 1910. By 1940, after 30 years of making cars and trucks in large numbers, manufacturers had produced vehicles that could reliably move people and goods across the country. Not only had the technology of the vehicle improved, but the infrastructure investment in roads and service stations made their use practical. Yet 30 years later, in 1970, one would hardly recognize the vehicles or infrastructure as the same as those in 1940. Looking at the changes in automobiles produced over that 30-year span, we see how RD&D led to the continuous infusion of modern electronics; improved combustion and manufacturing processes; and ultimately, safer, more reliable cars with higher fuel efficiency. In a functional sense, wind turbines now stand roughly where the U.S. automotive fleet stood in 1940. Gradual improvements have been made in the past 30 years over several generations of wind energy products. These technology advances enable today’s turbines to reliably deliver electricity to the grid at a reasonable cost.

Through continued RD&D and infrastructure development, great strides will be made to produce even more advanced machines supporting future deployment of wind power technology. This chapter describes the status of wind technology today and provides a brief history of technology development over the past three decades. Prospective improvements to utility-scale land-based wind turbines as well as offshore wind technology are discussed. Distributed wind technology [100 kilowatts (kW) or less] is also addressed in this chapter.
2.2 TODAY’S COMMERCIAL WIND TECHNOLOGY

Beginning with the birth of modern wind-driven electricity generators in the late 1970s, wind energy technology has improved dramatically up to the present. Capital costs have decreased, efficiency has increased, and reliability has improved. High-quality products are now routinely delivered by major suppliers of turbines around the world, and complete wind generation plants are being engineered into the grid infrastructure to meet utility needs. In the 20% Wind Scenario outlined in this report, it is assumed that capital costs would be reduced by 10% over the next two decades, and capacity factors would be increased by about 15% (corresponding to a 15% increase in annual energy generation by a wind plant).

2.2.1 WIND RESOURCES

Wind technology is driven by the nature of the resource to be harvested. The United States, particularly the Midwestern region from Texas to North Dakota, is rich in wind energy resources as shown in Figure 2-1, which illustrates the wind resources measured at a 50-meter (m) elevation. Measuring potential wind energy generation at a 100-m elevation (the projected operating hub height of the next generation of modern turbines) greatly increases the U.S. land area that could be used for wind deployment, as shown in Figure 2-2 for the state of Indiana. Taking these measurements into account, current U.S. land-based and offshore wind resources are estimated to be sufficient to supply the electrical energy needs of the entire country several times over. For a description of U.S. wind resources, see Appendix B.

Figure 2-1. The wind resource potential at 50 m above ground on land and offshore

Identifying the good wind potential at high elevations in states such as Indiana and off the shore of both coasts is important because it drives developers to find ways to harvest this energy. Many of the opportunities being pursued through advanced
technology are intended to achieve higher elevations, where the resource is much greater, or to access extensive offshore wind resources.

2.2.2 TODAY’S MODERN WIND TURBINE

Modern wind turbines, which are currently being deployed around the world, have three-bladed rotors with diameters of 70 m to 80 m mounted atop 60-m to 80-m towers, as illustrated in Figure 2-3. Typically installed in arrays of 30 to 150 machines, the average turbine installed in the United States in 2006 can produce approximately 1.6 megawatts (MW) of electrical power. Turbine power output is controlled by rotating the blades around their long axis to change the angle of attack with respect to the relative wind as the blades spin around the rotor hub. This is called controlling the blade pitch. The turbine is pointed into the wind by rotating the nacelle around the tower. This is called controlling the yaw. Wind sensors on the nacelle tell the yaw controller where to point the turbine. These wind sensors, along with sensors on the generator and drivetrain, also tell the blade pitch controller how to regulate the power output and rotor speed to prevent overloading the structural components. Generally, a turbine will start producing power in winds of about 5.36 m/s and reach maximum power output at about 12.52 m/s–13.41 m/s. The turbine will pitch or feather the blades to stop power production and rotation at about 22.35 m/s. Most utility-scale turbines are upwind machines, meaning that they operate with the blades upwind of the tower to avoid the blockage created by the tower.

The amount of energy in the wind available for extraction by the turbine increases with the cube (the third power) of wind speed; thus, a 10% increase in wind speed creates a 33% increase in available energy. A turbine can capture only a portion of this cubic increase in energy, though, because power above the level for which the electrical system has been designed, referred to as the rated power, is allowed to pass through the rotor.
In general, the speed of the wind increases with the height above the ground, which is why engineers have found ways to increase the height and the size of wind turbines while minimizing the costs of materials. But land-based turbine size is not expected to grow as dramatically in the future as it has in the past. Larger sizes are physically possible; however, the logistical constraints of transporting the components via highways and of obtaining cranes large enough to lift the components present a major economic barrier that is difficult to overcome. Many turbine designers do not expect the rotors of land-based turbines to become much larger than about 100 m in diameter, with corresponding power outputs of about 3 MW to 5 MW.

2.2.3 Wind Plant Performance and Price

The performance of commercial turbines has improved over time, and as a result, their capacity factors have slowly increased. Figure 2-4 shows the capacity factors at commercial operation dates (CODs) ranging from 1998 to 2005. The data show that turbines in the Lawrence Berkeley National Laboratory (Berkeley Lab) database (Wiser and Bolinger 2007) that began operating commercially before 1998 have an average capacity factor of about 22%. The turbines that began commercial operation after 1998, however, show an increasing capacity factor trend, reaching 36% in 2004 and 2005.

The cost of wind-generated electricity has dropped dramatically since 1980, when the first commercial wind plants began operating in California. Since 2003, however, wind energy prices have increased. Figure 2-5 (Wiser and Bolinger 2007)
shows that in 2006 the price paid for electricity generated in large wind farms was between 3.0 and 6.5 cents/kilowatt-hour (kWh), with an average near 5 cents/kWh (1 cent/kWh = $10/megawatt-hour [MWh]). This price includes the benefit of the federal production tax credit (PTC), state incentives, and revenue from the sale of any renewable energy credits.

Wind energy prices have increased since 2002 for the following reasons (Wiser and Bolinger 2007):

- Shortages of turbines and components, resulting from the dramatic recent growth of the wind industry in the United States and Europe
- The weakening U.S. dollar relative to the euro (many major turbine components are imported from Europe, and there are relatively few wind turbine component manufacturers in the United States)
A significant rise in material costs, such as steel and copper, as well as transportation fuels over the last three years

The on-again, off-again cycle of the wind energy PTC (uncertainty hinders investment in new turbine production facilities and encourages hurried and expensive production, transportation, and installation of projects when the tax credit is available).

Expected future reductions in wind energy costs would come partly from expected investment in the expansion of manufacturing volume in the wind industry. In addition, a stable U.S. policy for renewable energy and a heightened RD&D effort could also lower costs.

2.2.4 WIND TECHNOLOGY DEVELOPMENT

Until the early 1970s, wind energy filled a small niche market, supplying mechanical power for grinding grain and pumping water, as well as electricity for rural battery charging. With the exception of battery chargers and rare experiments with larger electricity-producing machines, the windmills of 1850 and even 1950 differed very little from the primitive devices from which they were derived. Increased RD&D in the latter half of the twentieth century, however, greatly improved the technology.

In the 1980s, the practical approach of using low-cost parts from agricultural and boat-building industries produced machinery that usually worked, but was heavy, high-maintenance, and grid-unfriendly. Little was known about structural loads caused by turbulence, which led to the frequent and early failure of critical parts, such as yaw drives. Additionally, the small-diameter machines were deployed in the California wind corridors, mostly in densely packed arrays that were not aesthetically pleasing in such a rural setting. These densely packed arrays also often blocked the wind from neighboring turbines, producing a great deal of turbulence for the downwind machines. Reliability and availability suffered as a result.

Recognizing these issues, wind operators and manufacturers have worked to develop better machines with each new generation of designs. Drag-based devices and simple lift-based designs gave way to experimentally designed and tested high-lift rotors, many with full-span pitch control. Blades that had once been made of sail or sheet metal progressed through wood to advanced fiberglass composites. The direct current (DC) alternator gave way to the grid-synchronized induction generator, which has now been replaced by variable-speed designs employing high-speed solid-state switches of advanced power electronics. Designs moved from mechanical cams and linkages that feathered or furled a machine to high-speed digital controls. A 50 kW machine, considered large in 1980, is now dwarfed by the 1.5 MW to 2.5 MW machines being routinely installed today.

Many RD&D advances have contributed to these changes. Airfoils, which are now tested in wind tunnels, are designed for insensitivity to surface roughness and dirt. Increased understanding of aeroelastic loads and the ability to incorporate this knowledge into finite element models and structural dynamics codes make the machines of today more robust but also more flexible and lighter on a relative basis than those of a decade ago.

As with any maturing technology, however, many of the simpler and easier improvements have already been incorporated into today’s turbines. Increased
RD&D efforts and innovation will be required to continue to expand the wind energy industry.

2.2.5 CURRENT TURBINE SIZE

Throughout the past 20 years, average wind turbine ratings have grown almost linearly, as illustrated by Figure 2-6. Each group of wind turbine designers has predicted that its latest machine is the largest that a wind turbine will ever be. But with each new generation of wind turbines (roughly every five years), the size has grown along the linear curve and has achieved reductions in life-cycle cost of energy (COE).

Figure 2-6. The development path and growth of wind turbines

As discussed in Section 2.2.2, this long-term drive to develop larger turbines is a direct result of the desire to improve energy capture by accessing the stronger winds at higher elevations. (The increase in wind speed with elevation is referred to as wind shear.) Although the increase in turbine height is a major reason for the increase in capacity factor over time, there are economic and logistical constraints to this continued growth to larger sizes.

The primary argument for limiting the size of wind turbines is based on the square-cube law. This law roughly states that as a wind turbine rotor grows in size, its energy output increases as the rotor swept area (the diameter squared), while the volume of material, and therefore its mass and cost, increases as the cube of the diameter. In other words, at some size, the cost for a larger turbine will grow faster than the resulting energy output revenue, making scaling a losing economic game.

Engineers have successfully skirted this law by either removing material or using it more efficiently as they increase size. Turbine performance has clearly improved, and cost per unit of output has been reduced, as illustrated in Figures 2-4 and 2-5. A Wind Partnerships for Advanced Component Technology (WindPACT) study has also shown that in recent years, blade mass has been scaling at an exponent of about 2.3 as opposed to the expected 3.0 (Ashwill 2004), demonstrating how successive
generations of blade design have moved off the cubic weight growth curve to keep weight down (see Figure 2-7). The latest designs continue to fall below the cubic line of the previous generation, indicating the continued infusion of new technology into blade design. If advanced RD&D were to result in even better design methods, as well as new materials and manufacturing methods that allow the entire turbine to scale as the diameter squared, continuing to innovate around this size limit would be possible.

Land transportation constraints can also limit wind turbine growth for turbines installed on land. Cost-effective road transportation is achieved by remaining within standard over-the-road trailer dimensions of 4.1 m high by 2.6 m wide and a gross vehicle weight (GVW) under 80,000 pounds (lb.; which translates to a cargo weight of about 42,000 lb.). Loads that exceed 4.83 m in height trigger expensive rerouting (to avoid obstructions) and often require utility and law enforcement assistance along the roadways. These dimension limits have the most impact on the base diameter of wind turbine towers. Rail transportation is even more dimensionally limited by tunnel and overpass widths and heights. Overall widths should remain within 3.4 m, and heights are limited to 4.0 m. Transportation weights are less of an issue in rail transportation, with GVW limits of up to 360,000 lb. (Ashwill 2004).

Once turbines arrive at their destination, their physical installation poses other practical constraints that limit their size. Typically, 1.5 MW turbines are installed on 80-m towers to maximize energy capture. Crane requirements are quite stringent because of the large nacelle mass in combination with the height of the lift and the required boom extension. As the height of the lift to install the rotor and nacelle on the tower increases, the number of available cranes with the capability to make this lift is fairly limited. In addition, cranes with large lifting capacities are difficult to transport and require large crews, leading to high operation, mobilization, and demobilization costs. Operating large cranes in rough or complex, hilly terrain can also require repeated disassembly to travel between turbine sites (NREL 2002).

2.2.6 CURRENT STATUS OF TURBINE COMPONENTS

The Rotor

Typically, a modern turbine will cut in and begin to produce power at a wind speed of about 5 m/s (see Figure 2-8). It will reach its rated power at about 12 m/s to 14
m/s, where the pitch control system begins to limit power output and prevent generator and drivetrain overload. At around 22 m/s to 25 m/s, the control system pitches the blades to stop rotation, feathering the blades to prevent overloads and damage to the turbine’s components. The job of the rotor is to operate at the absolute highest efficiency possible between cut-in and rated wind speeds, to hold the power transmitted to the drivetrain at the rated power when the winds go higher, and to stop the machine in extreme winds. Modern utility-scale wind turbines generally extract about 50% of the energy in this stream below the rated wind speed, compared to the maximum energy that a device can theoretically extract, which is 59% of the energy stream (see “The Betz Limit” sidebar).

Most of the rotors on today’s large-scale machines have an individual mechanism for pitch control; that is, the mechanism rotates the blade around its long axis to control the power in high winds. This device is a significant improvement over the first generation of fixed-pitch or collective-pitch linkages, because the blades can now be rotated in high winds to feather them out of the wind. This reduces the maximum loads on the system when the machine is parked. Pitching the blades out of high winds also reduces operating loads, and the combination of pitchable blades with a variable-speed generator allows the turbine to maintain generation at a constant rated-power output. The older generation of constant-speed rotors sometimes had instantaneous

The Betz Limit

Not all of the energy present in a stream of moving air can be extracted; some air must remain in motion after extraction. Otherwise, no new, more energetic air can enter the device. Building a wall would stop the air at the wall, but the free stream of energetic air would just flow around the wall. On the other end of the spectrum, a device that does not slow the air is not extracting any energy, either. The maximum energy that can be extracted from a fluid stream by a device with the same working area as the stream cross section is 59% of the energy in the stream. Because it was first derived by wind turbine pioneer Albert Betz, this maximum is known as the Betz Limit.
power spikes up to twice the rated power. Additionally, this pitch system operates as the primary safety system because any one of the three independent actuators is capable of stopping the machine in an emergency.

Blades

As wind turbines grow in size, so do their blades—from about 8 m long in 1980 to more than 40 m for many land-based commercial systems and more than 60 m for offshore applications today. Rigorous evaluation using the latest computer analysis tools has improved blade designs, enabling weight growth to be kept to a much lower rate than simple geometric scaling (see Figure 2-7). Designers are also starting to work with lighter and stronger carbon fiber in highly stressed locations to stiffen blades and improve fatigue resistance while reducing weight. (Carbon fiber, however, costs about 10 times as much as fiberglass.) Using lighter blades reduces the load-carrying requirements for the entire supporting structure and saves total costs far beyond the material savings of the blades alone.

By designing custom airfoils for wind turbines, developers have improved blades over the past 20 years. Although these airfoils were primarily developed to help optimize low-speed wind aerodynamics to maximize energy production while limiting loads, they also help prevent sensitivity to blade fouling that is caused by dirt and bug accumulation on the leading edge. This sensitivity reduction greatly improves blade efficiency (Cohen et al. 2008).

Current turbine blade designs are also being customized for specific wind classes. In lower energy sites, the winds are lighter, so design loads can be relaxed and longer blades can be used to harvest more energy in lower winds. Even though blade design methods have improved significantly, there is still much room for improvement, particularly in the area of dynamic load control and cost reduction.

Controls

Today’s controllers integrate signals from dozens of sensors to control rotor speed, blade pitch angle, generator torque, and power conversion voltage and phase. The controller is also responsible for critical safety decisions, such as shutting down the turbine when extreme conditions are encountered. Most turbines currently operate in variable-speed mode, and the control system regulates the rotor speed to obtain peak efficiency in fluctuating winds. It does this by continuously updating the rotor speed and generator loading to maximize power and reduce drivetrain transient torque loads. Operating in variable-speed mode requires the use of power converters, which offer additional benefits (which are discussed in the next subsection). Research into the use of advanced control methods to reduce turbulence-induced loads and increase energy capture is an active area of work.

Electrical controls with power electronics enable machines to deliver fault-ride-through control, voltage control, and volt-ampere-reactive (VAR) support to the grid. In the early days of grid-connected wind generators, the grid rules required that wind turbines go offline when any grid event was in progress. Now, with penetration of wind energy approaching 10% in some regions of the United States, more than 8% nationally in Germany, and more than 20% of the average generation in Denmark, the rules are being changed (Wiser and Bolinger 2007). Grid rules on both continents are requiring more support and fault-ride-through protection from the wind generation component. Current electrical control systems are filling this need with wind plants carefully engineered for local grid conditions.
The Drivetrain (Gearbox, Generator, and Power Converter)

Generating electricity from the wind places an unusual set of requirements on electrical systems. Most applications for electrical drives are aimed at using electricity to produce torque, instead of using torque to produce electricity. The applications that generate electricity from torque usually operate at a constant rated power. Wind turbines, on the other hand, must generate at all power levels and spend a substantial amount of time at low power levels. Unlike most electrical machines, wind generators must operate at the highest possible aerodynamic and electrical efficiencies in the low-power/low-wind region to squeeze every kilowatt-hour out of the available energy. For wind systems, it is simply not critical for the generation system to be efficient in above-rated winds in which the rotor is letting energy flow through to keep the power down to the rated level. Therefore, wind systems can afford inefficiencies at high power, but they require maximum efficiency at low power—just the opposite of almost all other electrical applications in existence.

Torque has historically been converted to electrical power by using a speed-increasing gearbox and an induction generator. Many current megawatt-scale turbines use a three-stage gearbox consisting of varying arrangements of planetary gears and parallel shafts. Generators are either squirrel-cage induction or wound-rotor induction, with some newer machines using the doubly fed induction design for variable speed, in which the rotor’s variable frequency electrical output is fed into the collection system through a solid-state power converter. Full power conversion and synchronous machines are drawing interest because of their fault-ride-through and other grid support capacities.

As a result of fleet-wide gearbox maintenance issues and related failures with some designs in the past, it has become standard practice to perform extensive dynamometer testing of new gearbox configurations to prove durability and reliability before they are introduced into serial production. The long-term reliability of the current generation of megawatt-scale drivetrains has not yet been fully verified with long-term, real-world operating experience. There is a broad consensus that wind turbine drivetrain technology will evolve significantly in the next several years to reduce weight and cost and improve reliability.

The Tower

The tower configuration used almost exclusively in turbines today is a steel monopole on a concrete foundation that is custom designed for the local site conditions. The major tower variable is height. Depending on the wind characteristics at the site, the tower height is selected to optimize energy capture with respect to the cost of the tower. Generally, a turbine will be placed on a 60-m to 80-m tower, but 100-m towers are being used more frequently. Efforts to develop advanced tower configurations that are less costly and more easily transported and installed are ongoing.

Balance of Station

The balance of the wind farm station consists of turbine foundations, the electrical collection system, power-conditioning equipment, supervisory control and data acquisition (SCADA) systems, access and service roads, maintenance buildings, service equipment, and engineering permits. Balance-of-station components contribute about 20% to the installed cost of a wind plant.
Operations and Availability

Operation and maintenance (O&M) costs have also dropped significantly since the 1980s as a result of improved designs and increased quality. O&M data from the technology installed well before 2000 show relatively high annual costs that increase with the age of the equipment. Annual O&M costs are reported to be as high as $30-$50/MWh for wind power plants with 1980s technology, whereas the latest generation of turbines has reported annual O&M costs below $10/MWh (Wiser and Bolinger 2007). Figure 2-9 shows annual O&M expenses by wind project age and equipment installation year. Relative to wind power prices shown in Figure 2-5, the O&M costs can be a significant portion of the price paid for wind-generated electricity. Since the late 1990s, modern equipment operation costs have been reduced for the initial operating years. Whether annual operation costs grow as these modern turbines age is yet to be determined and will depend greatly on the quality of these new machines.

Figure 2-9. Operation and maintenance costs for large-scale wind plants installed within the last 10 years for the early years of operation (Wiser and Bolinger 2007)

<table>
<thead>
<tr>
<th>Last Year of Equipment Installation (projects >5 MW only):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998/99 (Average +/- Std. Dev.)</td>
</tr>
<tr>
<td>2000/01 (Average +/- Std. Dev.)</td>
</tr>
<tr>
<td>2002/03 (Average +/- Std. Dev.)</td>
</tr>
<tr>
<td>2004/05 (Average +/- Std. Dev.)</td>
</tr>
</tbody>
</table>

SCADA systems are being used to monitor very large wind farms and dispatch maintenance personnel rapidly and efficiently. This is one area where experience in managing large numbers of very large machines has paid off. Availability, defined as the fraction of time during which the equipment is ready to operate, is now more than 95% and often reported to exceed 98%. These data indicate the potential for improving reliability and reducing maintenance costs (Walford 2006).

2.3 TECHNOLOGY IMPROVEMENTS ON THE HORIZON

Technology improvements can help meet the cost and performance challenges embedded in this 20% Wind Scenario. The required technological improvements are relatively straightforward: taller towers, larger rotors, and continuing progress through the design and manufacturing learning curve. No single component or design innovation can fulfill the need for technology improvement. By combining a number of specific technological innovations, however, the industry can introduce new advanced architectures necessary for success. The 20% Wind Scenario does not require success in all areas; progress can be made even if only some of the technology innovations are achieved.
2.3.1 Future Improvements to Turbine Components

Many necessary technological advances are already in the active development stages. Substantial research progress has been documented, and individual companies are beginning the development process for these technologies. The risk of introducing new technology at the same time that manufacturing production is scaling up and accelerating to unprecedented levels is not trivial. Innovation always carries risk. Before turbine manufacturers can stake the next product on a new feature, the performance of that innovation needs to be firmly established and the durability needs to be characterized as well as possible. These risks are mitigated by RD&D investment, including extensive component and prototype testing before deployment.

The following are brief summaries of key wind energy technologies that are expected to increase productivity through better efficiency, enhanced energy capture, and improved reliability.

The Rotor

The number one target for advancement is the means by which the energy is initially captured—the rotor. No indicators currently suggest that rotor design novelties are on their way, but there are considerable incentives to use better materials and innovative controls to build enlarged rotors that sweep a greater area for the same or lower loads. Two approaches are being developed and tested to either reduce load levels or create load-resistant designs. The first approach is to use the blades themselves to attenuate both gravity- and turbulence-driven loads (see the following subsection). The second approach lies in an active control that senses rotor loads and actively suppresses the loads transferred from the rotor to the rest of the turbine structure. These improvements will allow the rotor to grow larger and capture more energy without changing the balance of the system. They will also improve energy capture for a given capacity, thereby increasing the capacity factor (Ashwill 2004).

Another innovation already being evaluated at a smaller scale by Energy Unlimited Inc. (EUI; Boise, Idaho) is a variable-diameter rotor that could significantly increase capacity factor. Such a rotor has a large area to capture more energy in low winds and a system to reduce the size of the rotor to protect the system in high winds. Although this is still considered a very high-risk option because of the difficulty of building such a blade without excessive weight, it does provide a completely different path to a very high capacity factor (EUI 2003).

Blades

Larger rotors with longer blades sweep a greater area, increasing energy capture. Simply lengthening a blade without changing the fundamental design, however, would make the blade much heavier. In addition, the blade would incur greater structural loads because of its weight and longer moment arm. Blade weight and resultant gravity-induced loads can be controlled by using advanced materials with higher strength-to-weight ratios. Because high-performance materials such as carbon fibers are more expensive, they would be included in the design only when the payoff is maximized. These innovative airfoil shapes hold the promise of maintaining excellent power performance, but have yet to be demonstrated in full-scale operation.
One elegant concept is to build directly into the blade structure a passive means of reducing loads. By carefully tailoring the structural properties of the blade using the unique attributes of composite materials, the internal structure of the blade can be built in a way that allows the outer portion of the blade to twist as it bends (Griffin 2001). “Flap-pitch” or “bend-twist” coupling, illustrated in Figure 2-10, is accomplished by orienting the fiberglass and carbon plies within the composite layers of the blade. If properly designed, the resulting twisting changes the angle of attack over much of the blade, reducing the lift as wind gusts begin to load the blade and therefore passively reducing the fatigue loads. Yet another approach to achieving flap-pitch coupling is to build the blade in a curved shape (see Figure 2-11) so that the aerodynamic loads apply a twisting action to the blade, which varies the angle of attack as the aerodynamic loads fluctuate.

To reduce transportation costs, concepts such as on-site manufacturing and segmented blades are also being explored. It might also be possible to segment molds and move them into temporary buildings close to the site of a major wind installation so that the blades can be made close to, or actually at, the wind site.
Active Controls

Active controls using independent blade pitch and generator torque can be used to reduce tower-top motion, power fluctuations, asymmetric rotor loads, and even individual blade loads. Actuators and controllers already exist that can achieve most of the promised load reductions to enable larger rotors and taller towers. In addition, some researchers have published control algorithms that could achieve the load reductions (Bossanyi 2003). Sensors capable of acting as the eyes and ears of the control system will need to have sufficient longevity to monitor a high-reliability, low-maintenance system. There is also concern that the increased control activity will accelerate wear on the pitch mechanism. Thus, the technical innovation that is essential to enabling some of the most dramatic improvements in performance is not a matter of exploring the unknown, but rather of doing the hard work of mitigating the innovation risk by demonstrating reliable application through prototype testing and demonstration.

Towers

To date, there has been little innovation in the tower, which is one of the more mundane components of a wind installation. But because placing the rotor at a higher elevation is beneficial and because the cost of steel continues to rise rapidly, it is highly likely that this component will be examined more closely in the future, especially for regions of higher than average wind shear.

Because power is related to the cube (the third power) of wind speed, mining upward into these rich veins of higher wind speed potentially has a high payoff—for example, a 10% increase in wind speed produces about a 33% increase in available power. Turbines could sit on even taller towers than those in current use if engineers can figure out how to make them with less steel. Options for using materials other than steel (e.g., carbon fiber) in the tower are being investigated. Such investigations could bear fruit if there are significant adjustments in material costs. Active controls that damp out tower motion might be another enabling technology. Some tower motion controls are already in the research pipeline. New tower erection technologies might play a role in O&M that could also help drive down the system cost of energy (COE) (NREL 2002).

Tower diameters greater than approximately 4 m would incur severe overland transportation cost penalties. Unfortunately, tower diameter and material requirements conflict directly with tower design goals—a larger diameter is beneficial because it spreads out the load and actually requires less material because its walls are thinner. On-site assembly allows for larger diameters but also increases the number of joints and fasteners, raising labor costs as well as concerns about fastener reliability and corrosion. Additionally, tower wall thickness cannot be decreased without limit; engineers must adhere to certain minima to avoid buckling. New tower wall topologies, such as corrugation, can be employed to alleviate the buckling constraint, but taller towers will inevitably cost more.

The main design impact of taller towers is not on the tower itself, but on the dynamics of a system with the bulk of its mass atop a longer, more slender structure. Reducing tower-top weight improves the dynamics of such a flexible system. The tall tower dilemma can be further mitigated with smarter controls that attenuate tower motion by using blade pitch and generator torque control. Although both approaches have been demonstrated, they are still rarely seen in commercial applications.
The Drivetrain (Gearbox, Generator, and Power Conversion)

Parasitic losses in generator windings, power electronics, gears and bearings, and other electrical devices are individually quite small. When summed over the entire system, however, these losses add up to significant numbers. Improvements that remove or reduce the fixed losses during low power generation are likely to have an important impact on raising the capacity factor and reducing cost. These improvements could include innovative power-electronic architectures and large-scale use of permanent-magnet generators. Direct-drive systems also meet this goal by eliminating gear losses. Modular (transportable) versions of these large generation systems that are easier to maintain will go a long way toward increasing the productivity of the low-wind portion of the power curve.

Currently, gearbox reliability is a major issue, and gearbox replacement is quite expensive. One solution is a direct-drive power train that entirely eliminates the gearbox. This approach, which was successfully adopted in the 1990s by Enercon-GmbH (Aurich, Germany), is being examined by other turbine manufacturers. A less radical alternative reduces the number of stages in the gearbox from three to two or even one, which enhances reliability by reducing the parts count. The fundamental gearbox topology can also be improved, as Clipper Windpower (Carpinteria, California) did with its highly innovative multiple-drive-path gearbox, which divides mechanical power among four generators (see Figure 2-12). The multiple-drive-path design radically decreases individual gearbox component loads, which reduces gearbox weight and size, eases erection and maintenance demands, and improves reliability by employing inherent redundancies.

The use of rare-earth permanent magnets in generator rotors instead of wound rotors also has several advantages. High energy density eliminates much of the weight associated with copper windings, eliminates problems associated with insulation degradation and shorting, and reduces electrical losses. Rare-earth magnets cannot be subjected to elevated temperatures, however, without permanently degrading magnetic field strength, which imposes corresponding demands on generator cooling reliability. The availability of rare-earth permanent magnets is a potential concern because key raw materials are not available in significant quantities within the United States (see Chapter 3).

Power electronics have already achieved elevated performance and reliability levels, but opportunities for significant improvement remain. New silicon carbide (SiC) devices entering the market could allow operation at higher temperature and higher frequency, while improving reliability, lowering cost, or both. New circuit topologies could furnish better control of power quality, enable higher voltages to be used, and increase overall converter efficiency.

Distributed Energy Systems (Wallingford, Connecticut; formerly Northern Power Systems) has built an advanced prototype power electronics system that will deliver lower losses and conversion costs for permanent-magnet generators (Northern Power Systems 2006). Peregrine Power (Wilsonville, Oregon) has concluded that using SiC devices would reduce power losses, improve reliability, and shrink components by orders of magnitude (Peregrine Power 2006). A study completed by BEW Engineering (San Ramon, California; Behnke, Erdman, and Whitaker Engineering 2006) shows that using medium-voltage power systems for multimegawatt turbines could reduce the cost, weight, and volume of turbine electrical components as well as reduce electrical losses.
The most dramatic change in the long-term application of wind generation may come from the grid support provided by the wind plant. Future plants will not only support the grid by delivering fault-ride-through capability as well as frequency, voltage, and VAR control, but will also carry a share of power control capability for the grid. Plants can be designed so that they furnish a measure of dispatch capability, carrying out some of the traditional duties of conventional power plants. These plants would be operated below their maximum power rating most of the time and would trade some energy capture for grid ancillary services. Paying for this trade-off will require either a lower capital cost for the hardware, contractual arrangements that will pay for grid services at a high enough rate to offset the energy loss, or optimally, a combination of the two. Wind plants might transition, then, from a simple energy source to a power plant that delivers significant grid support.

2.3.2 Learning-Curve Effect

Progressing along the design and manufacturing learning curve allows engineers to develop technology improvements (such as those listed in Section 2.3.1) and reduce capital costs. The more engineers and manufacturers learn by conducting effective RD&D and producing greater volumes of wind energy equipment, the more proficient and efficient the industry becomes. The learning curve is often measured by calculating the progress ratio, defined as the ratio of the cost after doubling cumulative production to the cost before doubling.

The progress ratio for wind energy from 1984 to 2000 was calculated for the high volume of machines installed in several European countries that experienced a
healthy combination of steadily growing manufacturing output, external factors, and research investment during that time. Results show that progress ratio estimates were approximately the same for Denmark (91%), Germany (94%), and Spain (91%) (ISET 2003). At the time this report was written, there was not enough reliable data on U.S.-based manufacturing of wind turbines to determine a U.S. progress ratio. Figure 2-13 shows the data for Spain.

Figure 2-13. Cost of wind turbines delivered from Spain between 1984 and 2000

Note: The Y axis represents cost and is presented in logarithmic units. The data points shown fit the downward-sloping straight line with a correlation coefficient, r^2, of 0.85.

Moving from the current level of installed wind capacity of roughly 12 gigawatts (GW) to the 20% Wind Scenario total of 305 GW will require between four and five doublings of capacity. If the progress ratio of 91% shown in Figure 2-13 continues, prices could drop to about 65% of current costs, a 35% reduction. The low-hanging fruit of cost reduction, however, has already been harvested. The industry has progressed from machines based on designs created without any design tools and built almost entirely by hand to the current state of advanced engineering capability. The assumption in the 20% Wind Scenario is that a 10% reduction in capital cost could accelerate large-scale deployment. In order to achieve this reduction, a progress ratio of only 97.8% is required to produce a learning curve effect of 10% with 4.6 doublings of capacity. With sustained manufacturing growth and technological advancement, there is no technical barrier to achieving 10% capital cost reduction. See Appendix B for further discussion.

2.3.3 THE SYSTEM BENEFITS OF ADVANCED TECHNOLOGY

A cost study conducted by the U.S. Department of Energy (DOE) Wind Program identified numerous opportunities for technology advancement to reduce the life-cycle COE (Cohen and Schweizer et al. 2008). Based on machine performance and cost, this study used advanced concepts to suggest pathways that integrate the individual contributions from component-level improvements into system-level estimates of the capital cost, annual energy production, reliability, O&M, and balance of station. The results, summarized in Table 2-1, indicate significant potential impacts on annual energy production and capital cost. Changes in annual energy production are equivalent to changes in capacity factor because the turbine
rating was fixed. A range of values represents the best, most likely, and least beneficial outcomes.

The Table 2-1 capacity factor improvement of 11% that results from taller towers reflects the increase in wind resources at a hub height of 120 m, conservatively assuming the standard wind shear distribution meteorologists use for open country. Uncertainty in these capacity factor improvements are reflected in the table below. Depending on the success of new tower technology, the added costs could range from 8% to 20%, but there will definitely be an added cost if the tower is the only component in the system that is modified to take the rotor to higher elevations. An advantage would come from a system design in which the tower head mass is significantly reduced with the integration of a rotor and drivetrain that are significantly lighter.

Table 2-1. Areas of potential technology improvement

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Tower Concepts</td>
<td>• Taller towers in difficult locations</td>
<td>+11/+11/+11</td>
<td></td>
<td>+8/+12/+20</td>
</tr>
<tr>
<td></td>
<td>• New materials and/or processes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Advanced structures/foundations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Self-erecting, initial, or for service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced (Enlarged) Rotors</td>
<td>• Advanced materials</td>
<td>+35/+25/+10</td>
<td></td>
<td>-6/-3/+3</td>
</tr>
<tr>
<td></td>
<td>• Improved structural-aero design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Active controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Passive controls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Higher tip speed/lower acoustics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced Energy Losses and Improved</td>
<td>• Reduced blade soiling losses</td>
<td>+7/+5/0</td>
<td></td>
<td>0/0/0</td>
</tr>
<tr>
<td>Availability</td>
<td>• Damage-tolerant sensors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Robust control systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Prognostic maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drivetrain (Gearboxes and Generators</td>
<td>• Fewer gear stages or direct-drive</td>
<td>+8/+4/0</td>
<td></td>
<td>-11/-6/+1</td>
</tr>
<tr>
<td>and Power Electronics)</td>
<td>• Medium/low speed generators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Distributed gearbox topologies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Permanent-magnet generators</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Medium-voltage equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Advanced gear tooth profiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• New circuit topologies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• New semiconductor devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• New materials (gallium arsenide [GaAs], SiC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing and Learning Curve*</td>
<td>• Sustained, incremental design and process improvements</td>
<td>0/0/0</td>
<td></td>
<td>-27/-13/-3</td>
</tr>
<tr>
<td></td>
<td>• Large-scale manufacturing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reduced design loads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>+61/+45/+21</td>
<td></td>
<td>-36/-10/+21</td>
</tr>
</tbody>
</table>

*The learning curve results from the NREL report (Cohen and Schweizer et al. 2008) are adjusted from 3.0 doublings in the reference to the 4.6 doublings in the 20% Wind Scenario.
The capital cost reduction shown for the drivetrain components is mainly attributed to the reduced requirements on the structure when lighter components are placed on the tower top. Performance increases as parasitic losses in mechanical and electrical components are reduced. Such components are designed specifically to optimize the performance for wind turbine characteristics. The improvements shown in Table 2-1 are in the single digits, but are not trivial.

Without changing the location of the rotor, energy capture can also be increased by using longer blades to sweep more area. A 10% to 35% increase in capacity factor is produced by 5% to 16% longer blades for the same rated power output. Building these longer blades at an equal or lower cost is a challenge, because blade weight must be capped while turbulence-driven loads remain no greater than what the smaller rotor can handle. With the potential of new structurally efficient airfoils, new materials, passive load attenuation, and active controls, it is estimated that this magnitude of blade growth can be achieved in combination with a modest system cost reduction.

Technology advances can also reduce energy losses in the field. Improved O&M techniques and monitoring capabilities can reduce downtime for repairs and scheduled maintenance. It is also possible to mitigate losses resulting from degradation of performance caused by wear and dirt over time. These improvements are expected to be in the single digits at best, with an approximate 5% improvement in lifetime energy capture.

Doubling the number of manufactured turbines several times over the years will produce a manufacturing learning-curve effect that can also help reduce costs. The learning-curve effects shown in Table 2-1 are limited to manufacturing-related technology improvements and do not reflect issues of component selection and design. As discussed in Section 2.3.2, the learning curve reflects efficiencies driven by volume production and manufacturing experience as well as the infusion of manufacturing technology and practices that encourage more manufacturing-friendly design in the future. Although these changes do not target any added energy capture, they are expected to result in continuous cost reductions. The only adjustment from the NREL reference (Cohen and Schweizer et al. 2008) is that the 20% Wind Scenario by 2030 requires 4.6 doublings of cumulative capacity rather than the 3.0 doublings used in the reference targeted at the year 2012. The most likely 13% cost reduction assumes a conservative progress ratio of 97% per doubling of capacity. However, there are a range of possible outcomes.

The potential technological advances outlined here support the technical feasibility of the 20% Wind Scenario by outlining several possible pathways to a substantial increase in capacity factor accompanied by a modest but double-digit reduction in capital cost.

2.3.4 TARGETED RD&D

While there is an expected value to potential technology improvements, the risk of implementing them has not yet been reduced to the level that allows those improvements to be used in commercial hardware. The issues are well known and offer an opportunity for focused RD&D efforts. In the past, government and industry collaboration has been successful in moving high-risk, high-potential technologies into the marketplace.
One example of such collaboration is the advanced natural gas turbine, which improved the industry efficiency standard—which had been capped at 50%—to almost 60%. DOE invested $100 million in the H-system turbine and General Electric (GE) invested $500 million. Although it was known that higher operating temperatures would lead to higher efficiency, there were no materials for the turbine blades that could withstand the environment. The research program focused on advanced cooling techniques and new alloys to handle combustion that was nearly 300°F hotter. The project produced the world’s largest single crystal turbine blades capable of resisting high-temperature cracking. The resulting “H system” gas turbine is 11.89 m long, 4.89 m in diameter, and weighs more than 811,000 lb. Each turbine is expected to save more than $200 million in operating costs over its lifetime (DOE 2000).

A similar example comes from the aviation world. The use of composite materials was known to provide excellent benefits for light-jet airframes, but the certification process to characterize the materials was onerous and expensive. NASA started a program to “reduce the cost of using composites and develop standardized procedures for certifying composite materials” (Brown 2007). The Advanced General Aviation Transport Experiments (AGATE), which began in 1994, solved those problems and opened the door for new composite material technology to be applied to the light-jet application. A technology that would have been too high-risk for the individual companies to develop was bridged into the marketplace through a cooperative RD&D effort by NASA, the Federal Aviation Administration (FAA), industry, and universities. The Adam aircraft A500 turboprop and the A700 very light jet are examples of new products based on this composite technology.

Some might claim that wind technology is a finished product that no longer needs additional RD&D, or that all possible improvements have already been made. The reality is that the technology is substantially less developed than fossil energy technology, which is still being improved after a century of generating electricity. A GE manager who spent a career in the gas turbine business and then transferred to manage the wind turbine business noted the complexity of wind energy technology: “Our respect for wind turbine technology has grown tremendously. The practical side is so complex and forces are so dramatic. We would never have imagined how complex turbines are” (Knight and Harrison 2005).

Already, there is a clear understanding of the materials, controls, and aerodynamics issues that must be resolved to make progress toward greater capacity factors. The combination of reduced capital cost and increased capacity factor will lead to reduced COE. Industry feels the risk of bringing new technology into the marketplace without a full-scale development program is too great and believes sustained RD&D would help reduce risk and help enable the transfer of new technology to the marketplace.

2.4 Addressing Technical and Financial Risks

Risks tend to lessen industry’s desire to invest in wind technology. The wind plant performance track record, in terms of generated revenues and operating costs compared with the estimated revenues used in plant financing, will drive the risk level of future installations. The consequences of these risks directly affect the revenues of owners of wind manufacturing and operating capabilities.
2.4.1 DIRECT IMPACTS

When owners of wind manufacturing and operating capabilities directly bear the costs of failure, the impacts are said to be direct. This direct impact on revenue is often caused by:

- **Increasing O&M costs**: As discussed previously and illustrated in Figure 2-9, there is mounting evidence that O&M costs are increasing as wind farms age. Most of these costs are associated with unplanned maintenance or components wearing out before the end of their intended design lives. Some failures can be traced to poor manufacturing or installation quality. Others are caused by design errors, many of which are caused by weaknesses in the technology’s state of the art, generally codified by the design process. Figures 2-14 and 2-15 both show steadily rising O&M costs for wind farms installed in the United States in the two decades before the turn of the century, and Figure 2-14 shows the components that have caused these increasing costs. The numbers and costs of component failures increase with time, and the risk to the operators grows accordingly. In Figure 2-14, the solid lines represent expected repairs that may not be completely avoidable, and the dashed lines show potential early failures that can significantly increase risk.

- **Poor availability driven by low reliability**: Energy is not generated while components are being repaired or replaced. Although a single failure of a critical component stops production from only one turbine, such losses can mount up to significant sums of lost revenue.

- **Poor wind plant array efficiency**: If turbines are placed too close together, their wakes interact, which can cause the downwind turbines to perform poorly. But if they are placed too far apart, land and plant maintenance costs increase.

Figure 2-14. Unplanned repair cost, likely sources, and risk of failure with wind plant age

- Warranty
- Structural
- Gearbox Rebuild
- Blade Replacement
- Yaw Drive, Pitch Drive
- Generator Bearings
- Motors and Switchgear
- Control & Sensors

20 Years
2.4.2 **Indirect Impacts**

Although the wind industry has achieved high levels of wind plant availability and reliability, unpredictable or unreliable performance would threaten the credibility of this emerging technology in the eyes of financial institutions. The consequences of real or perceived reliability problems would extend beyond the direct cost to the plant owners. These consequences on the continued growth of investment in wind could include:

- **Increased cost of insurance and financing**: Low interest rates and long-term loans are critical to financing power plants that are loaded with upfront capital costs. Each financial institution will assess the risk of investing in wind energy and charge according to those risks. If wind power loses credibility, these insurance and financing costs could increase.

- **Slowing or stopping development**: Lost confidence contributed to the halt of development in the United States in the late 1980s through the early 1990s. Development did not start again until the robust European market supported the technology improvements necessary to reestablish confidence in reliable European turbines. As a result, the current industry is dominated by European wind turbine companies. Active technical supporters of RD&D must anticipate and resolve problems before they threaten industry development.

- **Loss of public support**: If wind power installations do not operate continuously and reliably, the public might be easily convinced that
renewable energy is not a viable source of energy. The public’s confidence in the technology is crucial. Without public support, partnerships working toward a new wind industry future cannot be successful.

2.4.3 **Risk Mitigation Through Certification, Validation, and Performance Monitoring**

To reduce risk, the wind industry requires turbines to adhere to international standards. These standards, which represent the collective experience of the industry’s leading experts, imply a well-developed design process that relies on the most advanced design tools, testing for verification, and disciplined quality control.

Certification

Certification involves high-level, third-party technical audits of a manufacturer’s design development. It includes a detailed review of design analyses, material selections, dynamic modeling, and component test results. The wind industry recognizes that analytical reviews are not sufficient to capture weaknesses in the design process. Therefore, consensus standard developers also require full-scale testing of blades, gearboxes, and the complete system prototype (see “Industry Standards” sidebar).

Actively complying with these standards encourages investment in wind energy by ensuring that turbines reliably achieve the maximum energy extraction needed to expand the industry.

Full-Scale Testing

Testing standards were drafted to ensure that accredited third-party laboratories are conducting tests consistently. These tests reveal many design and manufacturing deficiencies that are beyond detection by analytical tools. They also provide the final verification that the design process has worked and give the financial community the confidence needed to invest in a turbine model.

Full-scale test facilities and trained test engineers capable of conducting full-scale tests are rare. The facilities must have equipment capable of applying tremendous loads that mimic the turbulence loading that wind applies over the entire life of the blade or gearbox. Full-scale prototype tests are conducted in the field at locations with severe wind conditions. Extensive instrumentation is applied to the machine, according to a test plan prescribed by international standards, and comprehensive data are recorded over a specified range of operating conditions. These data give the certification agent a means for verifying the accuracy of the design’s analytical basis. The industry and financial communities depend on these facilities and skilled test engineers to support all new turbine component development.

As turbines grow larger and more products come on the market, test facilities must also grow and become more efficient. New blades are reaching 50 m in length, and
the United States has no facilities that can test blades longer than 50 m. Furthermore, domestic dynamometer facilities capable of testing gearboxes or new drivetrains are limited in capacity to 1.5 MW. The limited availability of facilities and qualified test engineers increases the deployment risk of new machines that are not subjected to the rigors of current performance validation in accredited facilities.

At full-scale facilities, it is also difficult to conduct tests accurately and capture the operating conditions that are important to verify the machine's reliability. These tests are expensive to conduct and accreditation is expensive to maintain for several reasons. First, the scale of the components is one of the largest of any commercial industry. Because blades are approaching sizes of half the length of a football field and can weigh more than a 12.2 m yacht, they are very difficult and expensive to transport on major highways. The magnitude of torque applied to the drivetrains for testing is among the largest of any piece of rotating equipment ever constructed. Figure 2-16 shows the largest blades being built and the approximate dates when U.S. blade test facilities were built to accommodate their testing.

Although it is very expensive for each manufacturer to develop and maintain

![Figure 2-16. Blade growth and startup dates for U.S. blade test facilities](image)

facilities of this scale for its own certification testing needs, without these facilities, rapid technological progress will be accompanied by high innovation risk. Wind energy history has proven that these kinds of tests are crucial for the industry’s success and the financial community’s confidence. These tests, then, are an essential element of any risk mitigation strategy.

Performance Monitoring and O&M

One of the main elements of power plant management is strategic monitoring of reliability. Other industries have established anonymous databases that serve to benchmark their reliability and performance, giving operators both the ability to recognize a drop in reliability and the data they need to determine the source of low reliability. The wind industry needs such a strategically designed database, which would give O&M managers the tools to recognize and pinpoint drops in reliability,
along with a way to collectively resolve technical problems. Reliability databases are an integral part of more sophisticated O&M management tools. Stiesdal and Madsen (2005) describe how databases can be used for managing O&M and improving future designs.

In mature industries, O&M management tools are available to help maximize maintenance efficiency. Achieving this efficiency is a key factor in minimizing the COE and maximizing the life of wind plants, thereby increasing investor confidence. Unlike central generation facilities, wind plants require maintenance strategies that minimize human attention and maximize remote health monitoring and automated fault data diagnosis. This requires intimate knowledge of healthy plant operating characteristics and an ability to recognize the characteristics of very complex faults that might be unique to a specific wind plant. Such tools do not currently exist for the wind industry, and their development will require RD&D to study wind plant systems interacting with complex atmospheric conditions and to model the interactions. The resultant deeper understanding will allow expert systems to be developed, systems that will aid operators in their quest to maximize plant performance and minimize operating costs through risk mitigation. These systems will also produce valuable data for improving the next generation of turbine designs.

2.5 OFFSHORE WIND TECHNOLOGY

Offshore wind energy installations have a broadly dispersed, abundant resource and the economic potential for cost competitiveness that would allow them to make a large impact in meeting the future energy needs of the United States (Musial 2007). Of the contiguous 48 states, 28 have a coastal boundary. U.S. electric use data show that these same states use 78% of the nation’s electricity (EIA 2006). Of these 28 states, only 6 have a sufficient land-based wind energy resource to meet more than 20% of their electric requirements through wind power. If shallow water offshore potential (less than 30 m in depth) is included in the wind resource mix, though, 26 of the 28 states would have the wind resources to meet at least 20% of their electric needs, with many states having sufficient offshore wind resources to meet 100% of their electric needs (Musial 2007). For most coastal states, offshore wind resources are the only indigenous energy source capable of making a significant energy contribution. In many congested energy-constrained regions, offshore wind plants might be necessary to supplement growing demand and dwindling fossil supplies.

Twenty-six offshore wind projects with an installed capacity of roughly 1,200 MW now operate in Europe. Most of these projects were installed in water less than 22 m deep. One demonstration project in Scotland is installed in water at a depth of 45 m. Although some projects have been hampered by construction overruns and higher-than-expected maintenance requirements, projections show strong growth in many European Union (EU) markets. For example, it is estimated that offshore wind capacity in the United Kingdom will grow by 8,000 MW by 2015. Similarly, German offshore development is expected to reach 5,600 MW by 2014 (BSH; BWEA).

In the United States, nine offshore project proposals in state and federal waters are in various stages of development. Proposed projects on the Outer Continental Shelf are under the jurisdiction of the Minerals Management Service (MMS) with their authority established by the Energy Policy Act (EPAct) of 2005 (MMS). Several states are pursuing competitive solicitations for offshore wind projects approval.
2.5.1 COST OF ENERGY

The current installed capital cost of offshore projects is estimated in the range of $2,400 to $5,000 per kW (Black & Veatch 2007; Pace Global 2007). Because offshore wind energy tends to take advantage of extensive land-based experience and mature offshore oil and gas practices, offshore cost reductions are not expected to be as great as land-based reductions spanning the past two decades. However, offshore wind technology is considerably less mature than land-based wind energy, so it does have significant potential for future cost reduction. These cost reductions are achievable through technology development and innovation, implementation and customization of offshore oil and gas practices, and learning-curve reductions that take advantage of more efficient manufacturing and deployment processes and procedures.

2.5.2 CURRENT TECHNOLOGY

Today’s baseline technology for offshore wind turbines is essentially a version of the standard land-based turbine adapted to the marine environment. Although turbines of up to 5 MW have been installed, most recent orders from Vestas (Randers, Denmark) and Siemens (Munich, Germany), the two leading suppliers of offshore wind turbines, range from 2.0 MW to 3.6 MW.

The architecture of the baseline offshore turbine and drivetrain comprises a three-bladed upwind rotor, typically 90 m to 107 m in diameter. Tip speeds of offshore turbines are slightly higher than those of land-based turbines, which have speeds of 80 m/s or more. The drivetrain consists of a gearbox generally run with variable-speed torque control that can achieve generator speeds between 1,000 and 1,800 rpm. The offshore tower height is generally 80 m, which is lower than that of land-based towers, because wind shear profiles are less steep, tempering the advantage of tower height.

The offshore foundation system baseline technology uses monopiles at nominal water depths of 20 m. Monopiles are large steel tubes with a wall thickness of up to 60 mm and diameters of 6 m. The embedment depth varies with soil type, but a typical North Sea installation must be embedded 25 m to 30 m below the mud line. The monopile extends above the surface where a transition piece with a flange to fasten the tower is leveled and grouted. Its foundation requires a specific class of installation equipment for driving the pile into the seabed and lifting the turbine and tower into place. Mobilization of the infrastructure and logistical support for a large offshore wind plant accounts for a significant portion of the system cost.

Turbines in offshore applications are arranged in arrays that take advantage of the prevailing wind conditions measured at the site. Turbines are spaced to minimize aggregate power plant energy losses, interior plant turbulence, and the cost of cabling between turbines.

The power grid connects the output from each turbine, where turbine transformers step up the generator and the power electronics voltage to a distribution voltage of about 34 kilovolts (kV). The distribution system collects the power from each turbine at a central substation where the voltage is stepped up and transmitted to shore through a number of buried, high-voltage subsea cables. A shore-based interconnection point might be used to step up the voltage again before connecting to the power grid.
Shallow water wind turbine projects have been proposed and could be followed by transitional and finally deepwater turbines. These paths should not be considered as mutually exclusive choices. Because there is a high degree of interdependence among them, they should be considered a sequence of development that builds from a shallow water foundation of experience and knowledge to the complexities of deeper water.

2.5.3 TECHNOLOGY NEEDS AND POTENTIAL IMPROVEMENTS

Offshore, wind turbine cost represents only one-third of the total installed cost of the wind project, whereas on land, the turbine cost represents more than half of the total installed cost. To lower costs for offshore wind, the focus must be on lowering the balance-of-station costs. These costs, which include those for foundations, electrical grids, O&M, and installation and staging costs, dominate the system COE. Turbine improvements that make turbines more reliable, more maintainable, more rugged, and larger, will still be needed to achieve cost goals. Although none of these improvements are likely to lower turbine costs, the net result will lower overall system costs.

Commercialization of offshore wind energy faces many technical, regulatory, socioeconomic, and political barriers, some of which may be mitigated through targeted short- and long-range RD&D efforts. Short-term research addresses impediments that prevent initial industry projects from proceeding and helps sharpen the focus for long-term research. Long-term research involves a more complex development process resulting in improvements that can help lower offshore life-cycle system costs.

Short-Term RD&D Options

Conducting research that will lead to more rapid deployment of offshore turbines should be an upfront priority for industry. This research should address obstacles to today’s projects, and could include the following tasks:

- **Define offshore resource exclusion zones:** A geographically based exclusion study using geographic information system (GIS) land use overlays would more accurately account for all existing and future marine uses and sensitive areas. This type of exclusion study could be part of a regional programmatic environmental impact statement and is necessary for a full assessment of the offshore resource (Dhanju, Whitaker, and Kempton 2006). Currently, developers bear the burden of siting during a pre-permitting phase with very little official guidance. This activity should be a jointly funded industry project conducted on a regional basis.

- **Develop certification methods and standards:** MMS has been authorized to define the structural safety standards for offshore wind turbines on the OCS. Technical research, analysis, and testing are needed to build confidence that safety will be adequate, and to prevent overcautiousness that will increase costs unnecessarily. Developing these standards will require a complete evaluation and harmonization of the existing offshore wind standards and the American Petroleum Institute (API) offshore oil and gas standards. MMS is currently determining the most relevant standards.

- **Develop design codes, tools, and methods:** The design tools that the wind industry uses today have been developed and validated for
land-based utility-scale turbines, and the maturity and reliability of the tools have led to significantly higher confidence in today’s wind turbines. By comparison, offshore design tools are relatively immature. The development of accurate offshore computer codes to predict the dynamic forces and motions acting on turbines deployed at sea is essential for moving into deeper water. One major challenge is predicting loads and the resulting dynamic responses of the wind turbine’s support structure when it is subjected to combined wave and wind loading. These offshore design tools must be validated to ensure that they can deal with the combined dominance of simultaneous wind and wave load spectra, which is a unique problem for offshore wind installations. Floating system analysis must be able to account for additional turbine motions as well as the dynamic characterization of mooring lines.

- **Site turbines and configure arrays:** The configuration and spacing of wind turbines within an array have a marked effect on power production from the aggregate wind plant, as well as for each individual turbine. Uncertainties in power production represent a large economic risk factor for offshore development. Offshore wind plants can lose more than 10% of their energy to array losses, but improvements in array layout and array optimization models could deliver substantial recovery (SEAWIND 2003). Atmospheric boundary layer interaction with the turbine wakes can affect both energy capture and plant-generated turbulence. Accurate characterization of the atmospheric boundary layer behavior and more accurate wake models will be essential for designing turbines that can withstand offshore wind plant turbulence. Wind plant design tools that are able to characterize turbulence generated by wind plants under a wide range of conditions are likely necessary.

- **Develop hybrid wind-speed databases:** Wind, sea-surface temperatures, and other weather data are housed in numerous satellite databases available from the National Oceanic and Atmospheric Administration (NOAA), NASA, the National Weather Service (NWS), and other government agencies. These data can be combined to supplement the characterization of coastal and offshore wind regimes (Hasager et al. 2005). The limitations and availability of existing offshore data must be understood. Application of these data to improve the accuracy of offshore wind maps will also be important.

Long-Term R&D Options

Long-term research generally requires hardware development and capital investment, and it must take a complex development path that begins early enough for mature technology to be ready when needed. Most long-term research areas relate to lowering offshore life-cycle system costs. These areas are subdivided into infrastructure and turbine-specific needs. Infrastructure to support offshore wind development represents a major cost element. Because this is a relatively new technology path, there are major opportunities for reducing the cost impacts. Although land-based wind turbine designs can generally be used for offshore deployment, the offshore environment will impose special requirements on turbines. These requirements must be taken into account to optimize offshore deployment. Areas where industry should focus efforts include:
• **Minimize work at sea:** There are many opportunities to lower project costs by reallocating the balance between work done on land and at sea. The portion of labor devoted to project O&M, land-based installation and assembly, and remote inspections and diagnostics can be rebalanced with upfront capital enhancements, such as higher quality assurance, more qualification testing, and reliable designs. This rebalancing might enable a significant life-cycle cost reduction by shifting the way wind projects are designed, planned, and managed.

• **Enhance manufacturing, installation and deployment strategies:** New manufacturing processes and improvements in existing processes that reduce labor and material usage and improve part quality have high potential for reducing costs in offshore installations. Offshore wind turbines and components could be constructed and assembled in or near seaport facilities that allow easy access from the production area to the installation site, eliminating the necessity of shipping large components over inland roadways. Fabrication facilities must be strategically located for mass-production, land-based assembly, and for rapid deployment with minimal dependence on large vessels. Offshore system designs that can be floated out and installed without large cranes can reduce costs significantly. New strategies should be integrated into the turbine design process at an early stage (Lindvig 2005; Poulsen and Skjærbaek 2005).

• **Incorporate offshore service and accessibility features:** To manage O&M, predict weather windows, minimize downtime, and reduce the equipment needed for up-tower repairs, operators should be equipped with remote, intelligent, turbine condition monitoring and self-diagnostic systems. These systems can alert operators to the need for operational changes, or enable them to schedule maintenance at the most opportune times. A warning about an incipient failure can alert the operators to replace or repair a component before it does significant damage to the system or leaves the machine inoperable for an extended period of time. More accurate weather forecasting will also become a major contributor in optimizing service schedules for lower cost.

• **Develop low-cost foundations, anchors, and moorings:** Current shallow-water foundations have already reached a practical depth limit of 30 m, and anchor systems beyond that are derived from conservative and expensive oil and gas design practices. Cost-saving opportunities arise for wind power plants in deeper water with both fixed-bottom and floating turbine foundations, as well as for existing shallow-water designs in which value-engineering cost reductions can be achieved. Fixed-bottom systems comprising rigid lightweight substructures, automated mass-production fabrication facilities, and integrated mooring and piling deployment systems that minimize dependence on large sea vessels are possible low-cost options. Floating platforms will require a new generation of mooring designs that can be mass produced and easily installed.

• **Use resource modeling and remote profiling systems:** Offshore winds are much more difficult to characterize than winds over land. Analytical models are essential for managing risk during the initial
siting of offshore projects, but are not very useful by themselves for micrositing (Jimenez et al. 2005). Alternative methods are needed to measure wind speed and wind shear profiles up to elevations where wind turbines operate. This will require new equipment such as sonic detection and ranging (SODAR), light detection and ranging (LIDAR), and coastal RADAR-based systems that must be adapted to measure offshore wind from more stable buoy systems or from fixed bases. Some systems are currently under development but have not yet been proven (Antoniou et al. 2006). The results of an RD&D measurement program on commercial offshore projects could generate enough confidence in these systems to eliminate the requirement for a meteorological tower.

- **Increase offshore turbine reliability:** The current offshore service record is mixed, and as such, is a large contributor to high risk. A new balance between initial capital investment and long-term operating costs must be established for offshore systems. This new balance will have a significant impact on COE. Offshore turbine designs must place a higher premium on reliability and anticipation of on-site repairs than their land-based counterparts. Emphasis should be placed on avoiding large maintenance events that require expensive and specialized equipment. This can be done by identifying the root causes of component failures, understanding the frequency and cost of each event, and appropriately implementing design improvements (Stiesdal and Madsen 2005). Design tools, quality control, testing, and inspection will need heightened emphasis. Blade designers must consider strategies to offset the impacts of marine moisture, corrosion, and extreme weather. In higher latitudes, designers must also account for ice flows and ice accretion on the blades. Research that improves land-based wind turbine reliability now will have a direct impact on the reliability of future offshore machines.

- **Assess the potential of ultra-large offshore turbines:** Land-based turbines may have reached a size plateau because of transportation and erection limits. Further size growth in wind turbines will largely be pushed by requirements unique to offshore turbine development. According to a report on the EU-funded UpWind project, “Within a few years, wind turbines will have a rotor diameter of more than 150 m and a typical size of 8 MW–10 MW” (Risø National Laboratory 2005). The UpWind project plans to develop design tools to optimize large wind turbine components, including rotor blades, gearboxes, and other systems that must perform in large offshore wind plants. New size-enabling technologies will be required to push wind turbines beyond the scaling limits that constrain the current fleet. These technologies include lightweight composite materials and composite manufacturing, lightweight drivetrains, modular pole direct-drive generators, hybrid space frame towers, and large gearbox and bearing designs that are tolerant of slower speeds and larger scales. All of the weight-reducing features of the taller land-based tower systems will have an even greater value for very large offshore machines (Risø National Laboratory 2005).
RD&D Summary

The advancement of offshore technology will require the development of infrastructure and technologies that are substantially different from those employed in land-based installations. In addition, these advances would need to be tailored to U.S. offshore requirements, which differ from those in the European North Sea environment. Government leadership could accelerate baseline research and technology development to demonstrate feasibility, mitigate risk, and reduce regulatory and environmental barriers. Private U.S. energy companies need to take the technical and financial steps to initiate near-term development of offshore wind power technologies and bring them to sufficient maturity for large-scale deployment. Musial and Ram (2007) and Bywaters and colleagues (2005) present more detailed analyses of actions for offshore development.

2.6 DISTRIBUTED WIND TECHNOLOGY

Distributed wind technology (DWT) applications refer to turbine installations on the customer side of the utility meter. These machines range in size from less than 1 kW to multimegawatt, utility-scale machines, and are used to offset electricity consumption at the retail rate. Because the WinDS deployment analysis does not currently segregate DWT from utility deployment, DWT applications are part of the land-based deployment estimates in the 20% Wind Energy Scenario.

Historically, DWT has been synonymous with small machines. The DWT market in the 1990s focused on battery charging for off-grid homes, remote telecommunications sites, and international village power applications. In 2000, the industry found a growing domestic market for behind-the-meter wind power, including small machines for residential and small farm applications and multimegawatt-scale machines for larger agricultural, commercial, industrial, and public facility applications. Although utility-scale DWT requirements are not distinguishable from those for other large-scale turbines, small machines have unique operating requirements that warrant further discussion.

2.6.1 SMALL TURBINE TECHNOLOGY

Until recently, three-bladed upwind designs using tail vanes for passive yaw control dominated small wind turbine technology (turbines rated at less than 10 kW). Furling, or turning the machine sideways to the wind with a mechanical linkage, was almost universally used for rotor overspeed control. Drivetrains were direct-drive, permanent-magnet alternators with variable-speed operation. Many of these installations were isolated from the grid. Today, there is an emerging technology trend toward grid-connected applications and nonfurling designs. U.S. manufacturers are world leaders in small wind systems rated at 100 kW or less, in terms of both market and technology.

Turbine technology begins the transition from small to large systems between 20 kW and 100 kW. Bergey Windpower (Norman, Oklahoma) offers a 50 kW turbine that uses technology commonly found in smaller machines, including furling, pultruded blades, a direct-drive, permanent-magnet alternator, and a tail vane for yaw control. Distributed Energy Systems offers a 100 kW turbine that uses a direct-drive, variable-speed synchronous generator. Although most wind turbines in the 100 kW range have features common to utility-scale turbines, including gearboxes, mechanical brakes, induction generators, and upwind rotors with active yaw control,
Endurance Windpower (Spanish Fork, Utah) offers a 5 kW turbine with such characteristics.

For small DWT applications, reliability and acoustic emissions are the prominent issues. Installations usually consist of a single turbine. Installations may also be widely scattered. So simplicity in design, ease of repair, and long maintenance and inspection intervals are important. Because DWT applications are usually close to workplaces or residences, limiting sound emissions is critical for market acceptance and zoning approvals. DWT applications are also usually located in areas with low wind speeds that are unsuitable for utility-scale applications, so DWT places a premium on low-wind-speed technologies.

The cost per kW of DWT turbines is inversely proportionate with turbine size. Small-scale DWT installation costs are always higher than those for utility-scale installations because the construction effort cannot be amortized over a large number of turbines. For a 1 kW system, hardware costs alone can be as high as $5,000 to $7,000/kW. Installation costs vary widely because of site-specific factors such as zoning and/or permitting costs, interconnection fees, balance-of-station costs, shipping, and the extent of do-it-yourself participation. Five-year warranties are now the industry standard for small wind turbines, although it is not yet known how this contributes to turbine cost. The higher costs of this technology are partially offset by the ability to compete with retail electricity rates. In addition, small turbines can be connected directly to the electric distribution system, eliminating the need for an expensive interconnection between the substation and the transmission.

Tower and foundation costs make up a larger portion of DWT installed cost, especially for wind turbines of less than 20 kW. Utility-scale turbines commonly use tapered tubular steel towers. However, for small wind turbines, multiple types, sources, and heights of towers are available.

2.6.2 Technology Trends

Recent significant developments in DWT systems less than 20 kW include the following:

- **Alternative power and load control strategies:** Furling inherently increases sound levels because the cross-wind operation creates a helicopter-type chopping noise. Aerodynamic models available today cannot accurately predict the rotor loads in the highly skewed and unsteady flows that occur during the furling process, complicating design and analysis. Alternative development approaches include soft-stall rotor-speed control, constant-speed operation, variable-pitch blades, hinged blades, mechanical brakes, and centrifugally actuated blade tips. These concepts offer safer, quieter turbines that respond more predictably to high winds, gusts, and sudden wind direction changes.

- **Advanced blade manufacturing methods:** Blades for small turbines have been made primarily of fiberglass by hand lay-up manufacturing or pultrusion. The industry is now pursuing alternative manufacturing techniques, including injection, compression, and reaction injection molding. These methods often provide shorter fabrication time, lower parts costs, and increased repeatability and uniformity, although the tooling costs are typically higher.
- **Rare-earth permanent magnets**: Ferrite magnets have long been the staple in permanent-magnet generators for small wind turbines. Rare-earth permanent magnets are now taking over the market with Asian suppliers offering superior magnetic properties and a steady decline in price. This enables more compact and lighter weight generator designs.

- **Reduced generator cogging**: Concepts for generators with reduced cogging torque (the force needed to initiate generator rotation) are showing promise to reduce cut-in wind speeds. This is an important advancement to improve low-wind-speed turbine performance and increase the number of sites where installation is economical.

- **Induction generators**: Small turbine designs that use induction generators are under development. This approach, common in the early 1980s, avoids the use of power electronics that increase cost and complexity, and reduce reliability.

- **Grid-connected inverters**: Inverters used in the photovoltaics market are being adapted for use with wind turbines. Turbine-specific inverters are also appearing in both single- and three-phase configurations. Another new trend is obtaining certification of most inverters by Underwriters Laboratories and others for compliance with national interconnection standards.

- **Reduced rotor speeds**: To reduce sound emissions, turbine designs with lower tip-speed ratios and lower peak-rotor speeds are being pursued.

- **Design standards and certification**: The industry is increasing the use of consensus standards in its turbine design efforts for machines with rotor swept areas under 200 m² (about 65 kW rated power). In particular, IEC Standard 61400-2 Wind Turbines – Part 2: Design Requirements of Small Wind Turbines. Currently, however, a limited number of wind turbines have been certified in compliance with this standard because of the high cost of the certification process. To address this barrier, a Small Wind Certification Council has been formed in North America to certify that small wind turbines meet the requirements of the draft AWEA standard that is based on the IEC standard (AWEA 1996–2007).

2.7 Summary of Wind Technology Development Needs

Wind technology must continue to evolve if wind power is to contribute more than a few percentage points of total U.S. electrical demand. Fortunately, no major technology breakthroughs in land-based wind technology are needed to enable a broad geographic penetration of wind power into the electric grid. However, there are other substantial challenges (such as transmission and siting) and significant costs associated with increased penetration, which are discussed in other chapters of this report. No improvement in cost or efficiency for a single component can achieve the cost reductions or improved capacity factor that system-level advances can achieve.
The wind capacity factor can be increased by enlarging rotors and installing them on taller towers. This would require advanced materials, controls, and power systems that can significantly reduce the weight of major components. Capital costs would also be brought down by the manufacturing learning curve that is associated with continued technology advancement and by a nearly fivefold doubling of installed capacity.

The technology development required to make offshore wind a viable option poses a substantial potential risk. Offshore wind deployment represents a significant fraction of the total wind deployment necessary for 20% wind energy by 2030. Today’s European shallow-water technology is still too expensive and too difficult to site in U.S. waters. Deepwater deployment would eliminate visual esthetics concerns, but the necessary technologies have yet to be developed, and the potential environmental impacts have yet to be evaluated. To establish the offshore option, work is needed to develop analysis methods, evaluate technology pathways, and field offshore prototypes.

Today’s market success is the product of a combination of technology achievement and supportive public policy. A 20% Wind Scenario would require additional land-based technology improvements and a substantial development of offshore technology. The needed cost and performance improvements could be achieved with innovative changes in existing architectures that incorporate novel advances in materials, design approaches, control strategies, and manufacturing processes. Risks are mitigated with standards that produce reliable equipment and full-scale testing that ensures the machinery meets the design requirements.

The 20% Wind Scenario assumes a robust technology that will produce cost-competitive generation with continued R&D investment leading to capital cost reduction and performance improvement. Areas where industry can focus RD&D efforts include those which require the most frequent repairs (see Figure 2-17). Such industry efforts, along with government-supported RD&D efforts, will support progress toward achieving two primary wind technology objectives:

- Increasing capacity factors by placing larger rotors on taller towers (this can be achieved economically only by using lighter components and load-mitigating rotors that reduce the integrated tower-top mass and structural loads; reducing parasitic losses
throughout the system can also make gains possible), developing advanced controls, and improving power systems.

- Reducing the capital cost with steady learning-curve improvements driven by innovative manufacturing improvements and a nearly fivefold doubling of installed capacity

2.8 REFERENCES AND OTHER SUGGESTED READING

