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LaPlace Transforms in Design and Analysis of Circuits© 
 

Part 1 - Basic Transforms 
 

by Tom Bertenshaw 
 

Why Use the LaPlace Transform?? 
 
In a short synopsis; using the LaPlace transform method of solving circuit differential 
equations allows the building of simple algebraic transfer functions that mathematically 
model the actual circuit; provides a quick method for calculating transfer function 
amplitude and phase as a function of frequency; and creates a foundation for the rapid 
calculating and graphing of circuit loop behavior with respect to stability. Summing the 
above, the use of transforms provides a simple procedure for performing an essential 
engineering function; i.e., predict circuit output as a function of input.  We will get to 
all of these as a matter of course, but first comes the fundamentals. 
 
We are all familiar with the concept of calculating the output by using a voltage division 
network, i.e., 
 

 
 
because the circuit is series, t oI I= , then: 
 

1 2 2

2

1 2

 or

 

in o

o i

V V
z z z

zV V
z z

=
+

⎛ ⎞
n= ∗⎜ ⎟+⎝ ⎠

 

 
which is a very handy and simple way of predicting the output for any given input.  It is, 
in fact, a very simple transfer function.  Be aware that we are slanting the whole further 
development of analysis and design around the transfer function technique as illustrated 
in the simple example above.   
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Notice that the equation has the general form of 
 

( ) inXferout *=  
 

where the term  means "transfer function".  Re-arranging this equation isolates and 
defines the transfer function as  

Xfer

 

Xfer
in

out
=  

 
 
Transfer functions have the innate ability to allow prediction of output as a function of 
input, and as such are extremely valuable engineering tools.  Getting there when the 
circuit equations are integral/differential can be cumbersome, and error fraught. 
Nevertheless circuit equations are generally integral/differential that can be masked and 
"worked around" by LaPlace's technique. 
 

A Series Circuit 
 
Consider a low-pass filter; 
 

 
 
The characteristic equation describing the voltage/current relationship for a resistor is: 

 
V I R= ∗  or riv ×=  (lower case denotes time changing variables) 

  
whereas for a capacitor the relationship is: 

dvi C
dt

=  

 
Because a capacitor is an open to DC, the vast majority of circuit problems in design or 
analysis that include capacitors occur in alternating or changing current situations. i.e., 

there is a 
dt
dv . 

 
Forming the ratio ino VV  for an RC network is not as straightforward as developing the 
impedance ratio as in the first case mentioned for the general, or frequency independent, 
case.  However a general method of solving the problem follows, and that is how we will 
proceed.    
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Observing that the circuit is a series circuit, and realizing that the current through the 
resistor MUST equal the current through the capacitor, we can write: 
 

Cr ii =   or 
 

dt
dv

C
R

vv ccin =
−

 

 
where  and  represent the same voltage. In other words, cv oV oV vc= ; and  is whatever 
the case may be: DC, changing DC or AC.  The notation for voltage is changed to denote 
that it can be time variable. 

inv

 
After suitable rearranging we get: 
 

c in
c

v Vdv dt dt
RC RC

+ =  

 
This relationship has an integrating factor of: 
 

1

or 
tdt

RC RCe e∫ . 
 
After both sides are multiplied by the integrating factor, the equation becomes: 
 

t
RC

cd v e
⎛ ⎞
⎜ ⎟
⎝ ⎠

 + dt
RC
eV

dt
RC
v

e
RC
t

incRC
t

=  

 
Integrating both sides gives us: 
 

  where  is the constant of integration.
t t

inRC RC
c nst nst

vv e e c c
RC

= +  

 
Isolating the dependent variable ( )cv  the relationship becomes: 
 

RC
t

nst
in

c ec
RC
v

v
−

+=  

at  ;0=t
RC
v

c in
nst −= ; therefore the complete solution is: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−
RC
t

in
c e

RC
v

v 1  
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After learning LaPlace Transform pairs and their applications, and having appealed to the 
use of the LaPlace Transform instead of using Ordinary Differential Equations, the 
process devolves to simple Algebra. 
 

dt
dv

C
R

vv ccin =
−

 becomes by direct application: 

 
( ) ( ) ( )ssCv

R
svsv

c
cin =

−
 (Step 1) 

  
rearranging yields: 
 

( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛ +

=

RC
sRC

sv
sv in

c 1
 (Step 2) 

 
which directly inverts to: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

−
RC
t

in
c e

RC
v

v 1  (Step 3) 

 
a far simpler process.  Because converting differential circuit equations into their LaPlace 
Transform pairs is so labor saving (and by extension, error saving) it is well worth while 
to become familiar with the process.   
 

The Definition 
 
Learning to convert expressions to their LaPlace equivalent is straightforward.  In every 
case we apply the definition of the LaPlace Transform: 
 

( ) ( ) dtetfsF st−∞

∫= 0
 

 
This expression says that the LaPlace Transform, ( )sF , equals the integral of the time 
function, , times the transform function .   ( )tf ste −

 
Ultimately the utility of the LaPlace Transform is to predict circuit behavior as a function 
of time, and by extension, using Bode's technique, to predict output amplitude and phase 
as a function of frequency.  Further, the transform of the transfer function provides for 
plotting the poles and zeros of the transfer function, which in turn, lays the foundation for 
the Root Locus method of analyzing circuit stability as a function of amplitude and 
frequency.  These topics will be covered in some detail as progression through the 
modules develops an ever increasing sophistication in the uses of the LaPlace Transform. 
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The Basic Transform Pairs 
 
Suppose we have a constant DC voltage of amplitude K . The task is to apply the 
definition and develop the LaPlace Transform of the constant K .  Directly applying the 
definition: 
 

( ) →= Ktf ( )
s
K

s
eKdteKdteKsF

st
stst =−===

∞−∞ −−∞

∫∫
000
|    

 
Recall that st

st

ee 1=−  and therefore, as ∞→t , 01 →ste  and also that  .10 =e

 

s
KK ↔   (Transform Pair #1) 

 
For example a constant voltage of 10vdc transforms to s10 ; 413.32 transforms to 

s32.413 ;  -22.87→ s87.22− ; etc. 
 

Quite often in the physical world we are confronted with signals that exponentially decay 
over time can and be expressed as: 
 

( ) tetf σ−=   
 

where σ  represents some physical parameter and having the units of sec1  or  
(radians).  In electronics 

rads
σ  is usually a time-constant generated by either an RC 

(resistance/capacitance) or an RL (resistance/inductance) network.  Recall that a single 
time-constant is defined when 1=tσ ; the value of the time-constant being σ1 .  When 

1=tσ ,  meaning that the signal decays to 37% of its peak value in one time-
constant. 

37.=− te σ

 
Graphically, it looks like this: 
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Exponential Decay
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This particular form occurs so often in nature, especially when applied to signals that 
decay over time, that it is also assigned a transform.   
 
Suppose there is an exponentially decaying voltage of value . atKe−

 
To find the transform we again directly apply the definition: 

 

( ) ( ) ( )
( )

( ) ( )as
K

as
KedteKdteeKsFKetf

tas
tasstatat

+
=

+
−===→=

∞+−∞ +−−∞ −− ∫∫
000
|  

 

as
KKe at

+
↔−   (Transform pair #2) 

 
For example: 
 

3
1010 3

+
↔−

s
e t  

 

78.6
36.236.2 78.6

+
−

↔− −

s
e t  

 
and so forth. 
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At this point we need to take a side excursi  into Euler's Identities, as the use of these 

ll of the following four identities can be developed and established by using the 

on
identities does two things: greatly simplifies the calculus of trigonometric functions by 
avoiding integration by parts and familiarizes us with the notational shorthand found in 
the literature. 
 
A
processes of Maclaurin's infinite series, which is found in any beginner’s Calculus text. 
Then by definition: 
 

( ) ( )tjte tj ωωω sincos +=  
( ) ( )tjte tj ωωω sincos −=−  

 
Recall that the units on ω  is in rads (radians), and that fπω 2= , also that tf 1=  (units 
on f is in Hertz and t  is in seconds), and as usual 1−=j ther of 
the above identities: 
 

.  Also note that from ei

 
ubtracting the lower from the upper, and rearranging, we get: 

1)0sin()0cos(0 =±=± je j  

S
 

( )
j
eet

tjtj

2
sin

ωω

ω
−−

=  

then adding the two, and rearranging, we get: 
 

2
)cos(

tjtj eet
ωω

ω
−+

=  

 
Using the Identities 

Suppose we have a simple sinusoid, such as: 
 

 
)sin()( tKtf ω=  

then, 

Ktf =)(
j
ee tjtj

2

ωω −−  

 
finding the LaPlace Transform by direct application then, 
 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
∫∫∫
∞ +−∞ −−−∞ −

dtedte
j

Kdte
j
eeK tjstjsst

tjtj

000 22
ωω

ωω

 

 
erforming the integration, and evaluation at the limits: p
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( )

( )
( )

( ) ( ) ( ) 22
00

11
2

||
2 ω

ω
ωωωω

ωω

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
−

−
∞+−∞−−

s
K

jsjsj
K

js
e

js
e

j
K tjstjs

 

 
so 

22)sin(
ω
ωω
+

↔
s

KtK    (Transform pair #3) 

For example: 
 

 

( )( )
( )22 72.7

72.73.5)72.7sin(3.5
+

↔
s

t  

 

( )25
30)5sin(6 2 +

↔
s

t  

 

( )6.59
92.40)72.7sin(3.5 2 +

−
↔−

s
t  

 
eL t ( ) ( )tKtf ωcos= , then, 

 
( ) ( ) dteKdteKdteeeKdtetKsF tjstjsst

sttj
st ∫∫∫∫

∞ +−∞ −−−∞ −∞ − +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
==

0000 222
)cos()( ωω

ω

ω  

 
( ) ( )

( ) ( ) ( )2200

11
222 ωωω

ωω

+
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
−

=+ ∫∫
∞ +−∞ −−

s
Ks

jsjs
KeKdteK tjstjs  

 
Pair #4 then, 

)

 

( 22)cos(
ω

ω
+

↔
s

KstK   (Transform pair #4) 

 

Exam
 
ples: 
 

( ) 25
4

5
4)5cos(4 222 +

=
+

↔
s

s
s

st  

 

49.18
67.5)3.4cos(67.5 2 +

−
↔−

s
st  
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Consider ; applying the d finition: )sin()( tKetf t ωσ−= e
 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
= ∫ ∫∫

∞ ∞ ++−−+−−∞ −
−

0 00 22
)( dttjstjsst

tjtj
t edte

j
Kdte

j
eeeKsF ωσωσ

ωω
σ  

 
( ) ( )

( ) ( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
++

−
−+

=⎟
⎠
⎞⎜

⎝
⎛ −∫ ∫

∞ ∞ ++−−+−

ωσωσ
ωσωσ

jsjsj
Kedte

j
K dttjstjs 11

22 0 0
 

 

( ) ( ) ( )( ) ( )( )⎟⎟⎠
⎞

⎜⎜
⎝

⎛
++−+
+−−++

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−
−+ ωσωσ

ωσωσ
ωσωσ jsjs

jsjs
j

K
jsjsj

K (
2

11
2

 

 

( )( ) ( )( ) ( ) 22

(
2 ωσ

ω
ωσωσ
ωσωσ

++
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−+
+−−++

s
K

jsjs
jsjs

j
K  

 
So, 

 

( ) 22)sin(
ωσ

ωωσ

++
↔−

s
KtKe t   (Transform Pair #5) 

 
Some examples: 

 

( ) 363
30)6sin(5 2

3

++
↔−

s
te t  

 

( ) 69.309.2
23.36)54.5sin(54.6 2

9.2

++
−

↔− −

s
te t  

 
As an aside, the interpretation of an electric signal written as: 

 
It has a peak value of  or |6.54| (Why can peak value be written as  in this case?) 

 has a time constant of 340 milliseconds 

requency in Hertz is about .88 (How does 5.54 get converted to .88?) 

o be complete an electric signal will be written as: 

 

 
)54.5sin(54.6 9.2 te t−−  

54.6± ±
 
It
 
F
 
T
 

)sin( θωσ +− tKe t  
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where θ  is the phase angle of the signal when 0=t .  Either or both σ  and θ  can be 0.  
A 0=σ  condition implies the signal does not decay with time.  0≠θ  means that  
possesses some initial amplitude at 

)(tf
0=t . 

 
Next is: 
 

)cos()( tKetf t ωσ−=  
 

Applying the definition: 
 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
= ∫ ∫∫

∞ ∞ ++−−+−−
−∞ −

0 00 22
)( dtedteKdteeeeKsF tjstjsst

tjtj
t ωσωσ

ωω
σ  

 
Using the same procedures as previously, we get: 

 

( )( )
( )

( )( )222 ωσ
σ

ωσωσ
ωσωσ

++
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−+
−++++

s
sK

jsjs
jsjsK  

 
and therefore: 

 
( )

( )( )22)cos(
ωσ

σωσ

++
+

↔−

s
sKtKe t    (Transform pair # 6) 

 
Examples: 

 
( )

( ) 625,4555.3
5.34.11)675cos(4.11 2

5.3

++
+

↔−

s
ste t  

 
( )

( ) 22
5.3

55.3
5.36)5cos(6
++

+−
↔− −

s
ste t  
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Consider the function as shown below.   
 

a
1

timea←

Creating an Impulse

 
It is clear that the area of the function is 1.  At 0=t  however, the case is not so clear; 
therefore, let us define this function to be )(tδ and possessing the following properties: 
 

⎭
⎬
⎫

⎩
⎨
⎧ =∞

=
elsewhere

tt
;0

0;)(δ  

 
Since )(tδ  only exists when its argument is 0, and recalling that the area under the curve 
is 1, finding the integral is reasoned as follows: 
 

∫
+

=
0

0
1)( dttδ  

 
The transform then, 
 

∫
+

=−0

0

0 1)( dtet sδ  

so, 
 

1)( ↔tδ  (Transform pair #7) 
 
Examples: 
 

1)(1 ↔tδ  
73.5)(73.5 ↔tδ  
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Saved by Reality 
 
A word of caution is not out of order here.  In actuality, )(tδ  can never have a width of 
exactly 0; such a signal does not exist. )(tδ  will always have some finite width, however 
narrow that may be (1 or 2 nanoseconds is pretty narrow).  Therefore recognizing that the 
area of )(tδ  is a constant for any width not exactly equal to 0 provides an extremely 
plausible argument.   
 
Even though )(tδ  has been defined to have an amplitude of ∞  at ,  in physical 
circuits  is not realizable and some constraints must be applied to the idea of 

0=t
∞ )(tδ  to be 

useful practically.  Circuit parameters, such as voltage, current and impedance, depend 
upon the variables of the circuit components, the power supply, and bandwidth of the 
signal and of the circuit.  None of these variables can be infinite in a real circuit; therefore 
the practical or real limit on )(tδ  is constrained to a far lesser value.   
 
The most useful aspect of )(tδ  is that its existence is limited to a specific very narrow 
temporal envelope, i.e., . In the limit, that envelope has no width and is , and 
that is an intellectual construct.  For our purposes then, it follows that if 

+→ 00 0=t
)(tδ  is applied to 

a signal  the result is some .  As it will be clear later, the real utility here is that )(tg )0(h
)(tδ  becomes a tool to define the existence of signals at, and only at  (or as we will 

discuss in the next section, where the argument
0=t

0)( =− at ). The theoretical and 
mathematical subtleties of this function will not be utilized beyond its utility as a place 
holder in time. 
 

Time Shifting, the Unit Step and the Rectangular Pulse 
 
Before we can mathematically define such a model for our purposes here, it is necessary 
to introduce the modeling of time shifting.  For example; suppose we wish to define a 
signal to begin when the switch was thrown and the circuit is energized.  Let such a 
signal be known as ,g  and let us agree that g  possesses an argument , and further 

 does not exist until the value of the argument 
)(t

)(tg 0)( =t .  Or, 
 

0)( =tg  for all 0<t  
1)( =tg  for all  0≥t

 
Further, let us define an argument on g , such that when we write  we agree that 
the signal cannot appear until the value 

)( atg −
0=− at .  Such that  

 
0)( =− atg for all 0)( <− at  
1)( =− atg  for all 0)( ≥− at  

 
For example: 
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timetime = a

g(t-a)

 
 
Notice that the signal we just agreed to define has an amplitude of either 0 or 1.  When 

 we will call this signal with an amplitude of 1 as a unit step.   0)( ≥− at
 
In the literature the unit step is frequently seen as  or as )(tu )( atu −  when time shifted.  
We will now follow that convention. 
 
Using the definition, the LaPlace transform of the unit step is: 
 

∫
∞ −=

0
)()( dtetusF st  

 
Since  for  and 0 everywhere else, we can re-write the above as: 1)( =tu 0≥t
 

s
dtesF st 1)(

0
== −∞

∫  

 

s
tu 1)( ↔  

 
by extension: 
 

s
KtKu ↔)(  

 
Consider a time shifted step, )( atu − .  Since the signal does not exist until , the 
limits of integration are changed to reflect this reality; therefore let  and 
apply the definition: 

at =
)()( atutf −=
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∫
∞ −∞−

− +=
−

=−=
a

as

a

st
st

s
e

s
edteatusF 0|)()(  

 
So, 
 

s
eatu

as−

↔− )(  

 
and by extension: 
 

s
KeatKu

as−

↔− )(  

Examples: 
 

s
etu

s34)3(4
−

↔−  

 

s
etu

s76.5033.9)76.5(033.9
−−

↔−−  

 
Pay attention to the exponent ; it is a as− codeword, and the codeword means the signal 
does not start until .  That is all it means;  is the time offset.  Notice that the 
exponent  has a different interpretation from the exponent 

at = a
as− st− ; one is a specific 

time and the other is general.  Time offset, )( atu − , can be applied to any signal in the 
chart of transform pairs in Table 1 with a corresponding right hand side factor of  sae−

 
An example is: 
  

22)(
)()sin(

ωσ
ωωσ

++
↔−

−
−

s
eKatutKe

sa
t  

 
or, 
 

( ) 495
77)10()7sin(11 2

10
5

++
↔−

−
−

s
etute

s
t  

 
The ability to mathematically model time shifting gets one step closer to modeling a 
rectangular pulse.  The next step is to add two unit steps, one positive and the other 
negative.   
 
Conceptually, this signal can be constructed this way: 
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1

time 

Unit Step u(t)

t=o

 
 

0

time 

Negative Unit Step  -u(t-a)

t=o

-1

t=a
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0

time 

Coincident u(t) &  -u(t-a)

t=o

-1

t=a

1

 
 

0

time 

Algebraic Result of u(t) &  -u(t-a)

t=o

-1

t=a

1

 
 
The algebraic addition of a unit step and a negative time shifted unit step creates the 
foundation of the signal we are looking for.  Mathematically it is modeled by: 
 

s
e

s
atutu

as−

−↔−−
1)()(  
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Again, by extension: 
 

( )ase
s
KatutuK −−↔−− 1))()((  

For example: 
 

))5()((5 −− tutu  
Looks like: 
 

t=5

Amplitude =5

 
with a transform of :                                 ( )se

s
515 −−  

 
The Transform of the Derivative and the Integral of  )(tf

 
Suppose we wish to find the LaPlace transform of the derivative of a function, .  
Again we will begin with the definition: 

)(' tf

 

∫
∞ −=

0
)(')( dtetfsF st  

 
Integrating by parts and allowing the variables to be distributed thus: 
 

)('
)('

0

tfdvsedu
dttfveu

st

st

=−=

==
−

∞− ∫  
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∫ ∫∫∫
∞ ∞−∞−∞ − +==

0 000
)(')(')(')( dttfesdttfedtetfsF ststst  

since, 

)()('
0

tfdttf =∫
∞

 

re-writing becomes: 

dtetfstfedtetfsF ststst ∫∫
∞ −

∞
−∞ − +==

000
)(|)()(')(  

and since by definition: 

)()(
0

sFdtetf st =∫
∞ −  

then, 

)()0()('
0

ssFfdtetf st +−=∫
∞ −  

or, 
)0()()(' fssFtf −↔   (Transform pair #9) 

Some examples: 

)0()( cc
c vssCv

dt
dv

C −↔  

 

)0()( issLi
dt
diL −↔  

 
As a side bar, since izv = , it follows that  and sL sC

1  are impedances. 

 
The next transform that we will consider in this part is the integral of  ).(tf
 
Applying the definition, as usual: 
 

dtetfsF st∫ ∫
∞ −⎟

⎠
⎞⎜

⎝
⎛=

0
)()(  

Again, we will integrate by parts, and choose: 
 

st

st

edvtfdu
s
evdttfu
−

−

==

−
== ∫

)(

)(  

then, 

∫∫∫ ∫ −∞
−∞ − +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=⎟

⎠
⎞⎜

⎝
⎛ dtetf

ss
edttfdtetf st

st
st )(1|)()( 00

 

 
Evaluating the first term on the RHS: 
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( ) ( ) 01)0(0)(
0

00
=⎟

⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛ ∫∫

∞
dtfdttf  

 
the transform becomes: 
 

s
sFdtetf st )(0)(

0
+=⎟

⎠
⎞⎜

⎝
⎛∫ ∫

∞ −     

or, 

∫ ↔
s
sFdttf )()(   (Transform pair #10) 

 
a circuit example is: 
 

∫ ↔
sL

sv
dttv

L
L

L
)(

)(1  

 
For a simple RLC series circuit, the differential equation satisfying Kirchhoff's Voltage 
Law is: 
 

inv
dt
diLidt

C
iR =++ ∫

1  

 
By direct application of the transform pairs, the above converts to (after re-arranging): 
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As we shall see, this quadratic form plays a major role in circuit analysis and design.  It 
becomes the focus of our attention particularly when issues of circuit stability occur. 
 
Another transform for Part 1, which is really a property of the mathematics, is the 
transform of . Applying the definition: )()( tbgtaf +
 

( )∫ ∫ ∫
∞ ∞ ∞ −−− +=+=+

0 0 0
)()()()()()( sbGsaFdtetgbdtetfadtetbgtaf ststst  

 
)()()()( sbGsaFtbgtaf +↔+   (Transform Pair #11) 

 
Examples:  
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In subsequent modules we will see how denominator factoring prevents the masking of 
the transformation pair identity and partial fraction expansion reduces the right side of the 
lower of the above two transforms to the right side of the upper. 
 
In Part 2 of this series, we will begin to use these transforms for constructing circuit 
equations and simple transfer functions.  Also any other transforms we might need for 
analysis will be developed as necessary.  The emphasis will be on learning by examples.  
Of course theoretical foundations will be provided when needed.   

Rev. A.2 
20 



 
Summarizing the pairs for Part 1 
 

Transform )(tf  )(sF  
1 K  

s
K  

2 tKe σ−  
σ+s

K  

3 )sin( tK ω  
22 ω

ω
+s

K  

4 )cos( tK ω  
22 ω+s

Ks  

5 )sin( tKe t ωσ−  
( ) 22 ωσ

ω
++s

K  

6 )cos( tKe t ωσ− ( )
( )( )22 ωσ

σ
++

+
s

sK

7 )(tδ  1 

           7a* )(tKδ  K  

8 )( atKu −  
s

Ke as−

 

9 )(' tf  )0()( fssF −  
10 ∫ dttf )(  

s
sF )(  

11 )()( tbgtaf +  )()( sbGsaF +
(*) K is preserved for practical circuit reasons, not for theoretical reasons as ∞∗K is 
approximately equal to ∞  

Table 1 
 

Table 1 is not all inclusive and other pairs will be examined and added when needed.  But 
for beginning analysis purposes Table 1 is adequate.   
 
It is very important to understand that to be able transform any  to an ,  
must be reduced to one of the forms so far developed.  If it is not in one of these forms it 
cannot be operated on until it is.  Study the right hand side functions, they identify the left 
hand side functions.   

)(sF )(tf )(sF
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