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Introduction to Boolean Algebra and Logic Circuits 
 

 

 

I. Boolean Variables 

 

Boolean variables are associated with the Binary Number system and are useful in 

the development of equations to determine an outcome based on the occurrence of 

events.  Boolean variables take on one of two (2) values: True or False.  The True 

value is also called “1” or On or High; and the False value is also called “0” or 

Off or Low.  These values can be associated with states of electrical parameters 

such as voltage and light.  For example, when using Transistor Transistor Logic 

(TTL) circuits the True value generally corresponds to a voltage level of 2 volts to 

the supply voltage, Vcc, which is approximately 5 volts; and False generally 

corresponds to 0 volts to 0.8 volts.  The transmission of Boolean values using 

fiber optic components can define a True as a condition where a laser diode, light 

emitting diode, or other light source is illuminating and a False as a condition 

where the light source is non-illuminating.  Boolean values are also associated 

with a physical input such as a position of a switch or set of relay contacts. A True 

can be associated with a closed switch or closed set of relay contacts, while a 

False can be associated with an open switch or open set of relay contacts.  

Boolean values can also be associated with a physical output such as a relay coil,  

where a True can be associated with an energized relay coil and a False can be 

associated with a de-energized relay coil. 

 

II. Boolean Operators 

 

Boolean equations use Boolean operators, also called gates.  The basic Boolean 

operators are NOT, AND, and OR. Diagrams representing each operator, equation 

for the operation, and input/output relationships are shown below. 

 

A. NOT Operator 

 

NOT

A Y

 

AY   
 

A Y 

1 0 

0 1 

 

The table above is called a Truth Table.  It defines the relationship 

between the inputs, which are usually represented by a letter at the 

beginning of the alphabet, and the output, which is usually represented by 
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the letter Y.  The output for the NOT operator is the negated value, or the 

complement, of the input.  It is said the variable Y is equal to not A.  In the 

equation the line over the top of the variable on the right side of the equal 

sign indicates the complement.  On a diagram it is the circle at the end 

which signifies the complement.  Alone the circle may not be visible in a 

diagram and could be easily overlooked.  To avoid this it is placed at the 

end of the triangular portion, which traditionally represents a buffer.  As 

shown above the circle may be placed at the output of the operator to 

represent the complement of the output.  It may also be placed at the input 

of the operator to represent the complement of the input variable. 

 

B. AND Operator 

 

      

A

AND

B
Y

 
BAY   

 

The dot between the A and the B is usually omitted and the equation is 

rewritten as: 

ABY   
 

A B Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

The output is a “1” when A and B are “1”.  Otherwise, the output is a “0”.  

It is said the Y equals A and B.  The electrical circuit below illustrates the 

concept. 

 

Voltage

Source

A B

 
 

 

The light is illuminated (Boolean value of “1”) when switch A is closed 

(Boolean value of “1”) and when switch B is closed (Boolean value of 

“1”).  When any or both switches are opened (Boolean value of “0”) the 

light is extinguished (Boolean value of “0”). 

 

The AND operator above is a two (2) input operator.  It can be expanded 

to any number of inputs.  The function will not change; that is the output 

will be “1” when all inputs are “1”.  It will be “0” otherwise. 
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The AND function is similar to algebraic multiplication; that is “0” 

multiplied by any quantity yields “0”, and “1” multiplied by itself yields 

“1”.  

 

C. OR Operator 

 

A

B
Y

OR
 

BAY   
 

A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

 

The output is a “1” when A or B or both are “1”.  Otherwise, the output is 

a “0”.  It is said the Y equals A or B.  The electrical circuit below illustrates 

the concept. 

 

Voltage

Source

A

B
 

 

The light is illuminated (Boolean value of “1”) when switch A is closed 

(Boolean value of “1”) or when switch B is closed (Boolean value of “1”). 

When both switches are opened (Boolean value of “0”) the light is 

extinguished (Boolean value of “0”). 

 

The OR operator above is a two (2) input operator.  It can be expanded to 

any number of inputs.  The function will not change; that is the output will 

be “1” when one or more inputs are “1”.  It will be “0” otherwise. 

 

The OR function is similar to algebraic addition; that is “0” added to itself 

yields “0”, “0” added to “1” yields “1”, the only exception is “1” added to 

itself which, in algebra, yields “2”, but in Boolean algebra 1 + 1 yields 

“1”. 

 

From the three (3) basic Boolean operators described above, other 

operators that are commonly used are derived.  They are the NAND 
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operator, the NOR operator, Exclusive OR (XOR) operator, and the NOT 

Exclusive OR (NXOR) operator. 

 

D. NAND Operator 

 

A

NAND

B
Y

 

BAY   
 

The dot between the A and B is usually omitted and the equation is written 

as ABY  . 

 

A B Y 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

 

The NAND operator is constructed of the AND operator and the NOT 

operator, as shown below. 

 

A

AND

B

NOT

Y

 
 

The output is a “0” when A and B are “1”.  Otherwise, the output is a “1”. 

This operator is the AND operation followed by the NOT operation.  It is 

said the Y equals not A and B.  The circle at the output performs the 

complement.  Note that it is incorrect to say Y equals not A and not B; this 

is a different Boolean equation, the variables are being complemented 

prior to the AND operation. 

 

The NAND operator above is a two (2) input operator.  It can be expanded 

to any number of inputs.  The function will not change; that is the output 

will be “1” when one or more inputs are equal to “0”.  It will be “0” 

otherwise. 
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E. NOR Operator 

 

A

B
Y

NOR
 

 

 

BAY   
 

A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

 

 

The NOR operator is constructed of the OR operator and the NOT 

operator, as shown below. 

 

A

B

OR
NOT

Y

 
 

The output is a “0” when A or B or both are “1”.  Otherwise, the output is 

a “1”.  This operator is the OR operation followed by the NOT operation.  

It is said the Y equals not A or B.  The circle at the output performs the 

complement.  Note that it is incorrect to say Y equals not A or not B; this is 

a different Boolean equation, the variables are being complemented prior 

to the OR operation. 

 

The NOR operator above is a two (2) input operator.  It can be expanded 

to any number of inputs.  The function will not change; that is the output 

will be “1” when all inputs are “0”.  It will be “0” otherwise. 

 

F. XOR Operator 

 

A

B
Y

XOR
 

BAY   
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A B Y 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

Using basic Boolean operators the logic for the XOR operator is drawn 

below. 

 

A

B BA

BA

BABA 

 
The output is a “1” when A and B are of different values.  The output is 

“0” when A and B are of the same value.  It is said the Y equals A 

exclusive or’d with B. 

 

The XOR operator above is a two (2) input operator.  It can be expanded 

to any number of inputs.  The function will not change, that is the output 

will be “1” when one and only one input is of a different value.  It will be 

“0” otherwise. Or, put in another way, if there are N inputs, then the 

output will be “1” if N-1 inputs are of the same value. 

 

G. NXOR Operator 

 

A

B
Y

NXOR
 

BAY   

 

A B Y 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

 

The output is a “1” when A and B are of the same value.  The output is “0” 

when A and B are of different values.  It is said the Y equals A exclusive 

nor’d with B.  Note that it is incorrect to say Y equals not A exclusive 
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nor’d with not B; this is a different Boolean equation, the variables are 

being complemented prior to the NXOR operation. 

 

The NXOR operator above is a two (2) input operator.  It can be expanded 

to any number of inputs.  The function will not change; that is the output 

will be “0” when one and only one input is of a different value.  It will be 

“1” otherwise.  Or, put in another way, if there are N inputs, then the 

output will be “0” if N-1 inputs are of the same value. 

 

III. Analysis of Boolean Equations: 

 

A. Format 

 

Boolean equations have the same format as ordinary algebraic equations; 

an unknown equals a combination of variables.  Some examples are: 

 

1. CDCBAABDABCYDCBAf ),,,( , Equation 1 

2. C)A(BYCBAf ),,( , Equation 2 

3. )CD)A((BB)D)(AC(AB YDCBAf ),,,( , Equation 3 

 

B. Order of Operations 

 

The evaluation of a Boolean equation occurs left to right: negation of 

single terms occurs first, followed by the AND operation, then followed 

by the OR operation.  This sequence is repeated until the equation is 

evaluated to be a “0” or a “1”.  The order of operations may be changed by 

the use of parentheses, in which case the operation within the parentheses 

is to be performed first.  This is similar to ordinary algebra.  Equations 1, 

2, and 3 above will be evaluated using the following values, A=1, B=1, 

C=0, and D=1. 

 

For Equation 1 the ABC term evaluates to 0011  , the ABD term 

evaluates to 1111  , the CBA  term evaluates to 0110011  , 

(note the complement occurs before the AND operation), the CD term 

evaluates to 010  .  Substituting in for ABC , ABD , CBA , and CD  

yields 0 + 1 + 0 + 0, respectively, which results in a value of “1”. 

 

For Equation 2 the expression inside the parentheses is evaluated first then 

an AND operation is performed with the A term.  The C)(B   evaluates to 

(1 + 0) = 1.  Substituting in for A and (B + C) yields 11 , respectively, 

which results in a value of “1”. 

 

For Equation 3 the expressions inside the parentheses are evaluated first.  

The (AB + D) evaluates to 1111  , the (AC + B) evaluates to 
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1101  .  For the )CD)A((B   term the inner most parentheses are 

evaluated first, (B + D) evaluates to (1 + 1) = 1.  The )CD)A((B   term 

can now be evaluated, 1111011  .  The complement of C is 

performed prior to the AND operation.  The results are placed in the 

equation, evaluated, then the complement of the single term is performed, 

01111  . 

 

C. Basic Theorems 

 

There are eight (8) single variable identities that can be used to simplify 

Boolean equations: 

 

1. A + 0 = A, a variable OR’d with “0” equals itself 

2. A + 1 = 1, a variable OR’d with “1” equals “1” 

3. A + A = A, a variable OR’d with itself equals itself 

4. 1  AA , a variable OR’d with its complement equals “1” 

5. A A 1 , a variable AND’d with “1” equals itself 

6. 00   A , a variable AND’d with “0” equals “0” 

7. A AA  , a variable AND’d with itself equals itself 

8. 0 A A , a variable AND’d with its complement equals “0” 

 

The commutative, associative, and distributive properties apply to Boolean 

algebra: 

 

1. ABBA  , and ABBA  , communicative property 

2. CBACBACBA  )()( , and 

CBACBACBA  )()( , associative property 

3. )()()( CABACBA  , and 

)()()( CABACBA  , distributive property 

 

D. DeMorgan’s Theorem 

 

DeMorgan’s Theorem is given by: 

 

1.  CBACBA  and 

2.  CBACBA . 

 

It can be stated as, for Case 1, the complement of an AND of variables is 

equal to the OR of the complements of the individual variables and, for 

Case 2, the complement of the OR of variables is equal to the AND of the 

complements of the individual variables. 

 

Using Equation 3 in Section III as an example: 
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)CD)A((BB)D)(AC(AB YDCBAf ),,,( .   

 

Start by expanding the B)D)(AC(AB   term using algebraic techniques, 

and the Basic Theorems described above, which results in: 

 

BDACDABABC  .   

 

Expand the ))(( CADB   term, which results in: DCACAB  .   

The equation is now: DCACABBDACDABABCY  .   

 

Applying DeMorgan’s Theorem results in: 

 

DCACABBDACDABABCY  .   

 

DeMorgan’s Theorem can be applied again to the individual terms.  For 

example, CBAABC  . 

 

IV. Analysis of Logic Circuits 

 

Logic circuits consists of multiple gates, which may have multiple inputs, 

connected together to perform a useful function.  They are used in the design of 

control systems and other digital systems. 

 

Examples would be the Exclusive OR and Exclusive NOR in Sections II.F and 

II.G. 

 

The technique for the solution of logic circuits involves starting at the input of the 

logic circuit and determining an output equation for each gate.  Then use that 

output equation for the input of the next gate and determine a subsequent output 

equation.  Repeat this process until the final output equation is determined. 

 

An example is shown below. 

 

The equation for the output of logic gates below is: 

 

a.   

b.   
c.  
d.  
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A

B

Y

 
Answer: The correct answer is b 

 

In solving logic gates it is helpful to define outputs at each gate, then solve for an 

output, use that output as the input for the subsequent gate, solve for the output of 

that subsequent gate, and repeat this process until the final equation is solved.  A 

revised diagram with outputs at each gate, Y1 and Y2, is shown below. 

 

A

B

Y

Y1

Y2

B

A
Y2

Y1

 
It should be noted that the circle indicates that the input is complemented and the 

complemented input is shown inside the gate for convenience.  First generate the 

equation for Y1,  .  Second, generate the equation for Y2, .  

Third, generate the equation for Y, .  Finally, substitute the equations 

for Y1 and Y2,  . 

 


