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ORD Facility in
Research Triangle Park, NC

•The Office of Research and Development (ORD) is the scientific research arm of EPA
•562 peer-reviewed journal articles in 2018

•Research is conducted by ORD’s four national centers, and three 
offices organized to address:
•Public health and env. assessment; comp. tox. and exposure; 

env. measurement and modeling; and env. solutions and 
emergency response.

•13 facilities across the United States

US EPA Office of Research and Development

•Research conducted by a combination of Federal 
scientists (including uniformed members of the 
Public Health Service); contract researchers; and 
postdoctoral, graduate student, and post-
baccalaureate trainees
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Chemical Regulation in the United States

• Park et al. (2012): At least 3221 chemical 
signatures in pooled human blood samples, many 
appear to be exogenous

• A tapestry of laws covers the chemicals people 
are exposed to in the United States (Breyer, 2009)

• Different testing requirements exist for food 
additives, pharmaceuticals, and pesticide active 
ingredients (NRC, 2007)

November 29, 2014
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• Most other chemicals, ranging from industrial waste 
to dyes to packing materials, are covered by the Toxic 
Substances Control Act (TSCA)

• Thousands of chemicals on the market were 
“grandfathered” in without assessment 
Judson et al. (2009), Egeghy et al. (2012), Wetmore et al. (2015)

“Tens of thousands of chemicals are listed with the 
Environmental Protection Agency (EPA) for commercial 
use in the United States, with an average of 600 new 

chemicals listed each year.” 
U.S. Government Accountability Office

March, 2013

Chemical Regulation in the United States
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Three Components for Chemical Risk

Exposure

Hazard

Chemical Risk 

NRC (1983)

The National Academy of Sciences, Engineering and Medicine (1983) 
outlined three components for determining chemical risk.

Dose-Response
(Toxicokinetics 

/Toxicodynamics)
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• TSCA was updated in June, 2016 to allow more rapid 
evaluation of chemicals (Frank R. Lautenberg 
Chemical Safety for the 21st Century Act)

• New approach methodologies (NAMs) are being 
considered to inform prioritization of chemicals for 
testing and evaluation (Kavlock et al., 2018)

• EPA has released a “A Working Approach for 
Identifying Potential Candidate Chemicals for 
Prioritization” (September, 2018)

Toxic Substances 
Control Act (TSCA)

Schmidt, C. W. (2016). TSCA 2.0: A new era in 
chemical risk management”, Environmental 
Health Perspectives, A182-A186.
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• The U.S. National Research Council (1983) identified chemical 
risk as a function of both inherent hazard and exposure

• To address thousands of chemicals, we need NAMs that can 
inform prioritization of chemicals most worthy of additional 
study

• High throughput risk prioritization needs:
1. High throughput hazard characterization                            

(Dix et al., 2007, Collins et al., 2008)
2. High throughput exposure forecasts                       

(Wambaugh et al., 2013, 2014)
3. High throughput toxicokinetics (i.e., dose-response 

relationship) linking hazard and exposure                
(Wetmore et al., 2012, 2015)

Potential 
Exposure Rate

mg/kg BW/day

Potential Hazard 
from in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

Chemical Risk = Hazard x Exposure
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High-Throughput Risk Prioritization

Exposure

Hazard

High throughput screening 
(HTS) for in vitro bioactivity 
potentially allows 
characterization of thousands 
of chemicals for which no 
other testing has occurred

NRC (2007)

To perform high throughput risk prioritization, we need all three components

Dose-Response
(Toxicokinetics 

/Toxicodynamics)

High-Throughput
Risk 

Prioritization
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High-throughput Screening

Kaewkhaw et al. (2016)

Hertzberg and Pope (2000):
• “New technologies in high-throughput screening have significantly increased throughput and reduced 

assay volumes…”

• “…new fluorescence 
methods, detection 
platforms and liquid-
handling technologies.”

• Typically assess many 
chemicals with a signal 
readout (e.g., green 
fluorescent protein).

Positive
Control

Titration of 
Potential Hits
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The Margin Between Exposure and Hazard

Aylward and Hays (2011) 
Journal of Applied Toxicology 31 741-751 

estimated or measured 
average concentrations 
associated with the LOAEL 
in animal studies

Humans with chronic 
exposure reference values 
(solid circles)

NOAEL in animal studies

Biomonitored occupational 
populations

Volunteers using products 
containing the chemical

General populations

x

+



11 of 53 Office of Research and Development

Concentration

Re
sp

on
se

In vitro Assay AC50

Concentration (µM)

Assay AC50
with Uncertainty

High-Throughput Bioactivity 
Screening Projects

 We attempt to estimate points of departure in vitro using 
high throughput screening (HTS)

 Tox21:  Examining >8,000 chemicals using ~50 assays 
intended to identify interactions with biological pathways 
(Schmidt, 2009)

 ToxCast: For a subset (>2000) of Tox21 chemicals ran 
>1100 additional assays (Kavlock et al., 2012)

 Most assays conducted in dose-response format (identify 
50% activity concentration – AC50 – and efficacy if data 
described by a Hill function, Filer et al., 2016)

 All data are public: http://comptox.epa.gov/dashboard/
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New Approach Methodologies (NAMs)

• There are roughly 10,000 TSCA-relevant 
chemicals in commerce

• Considering the inclusion of new 
approach methodologies (NAMs). These 
NAMs include:
• High throughput screening (ToxCast)
• High throughput exposure estimates 

(ExpoCast)
• High throughput toxicokinetics 

(HTTK)

• TSCA Proof of concept: Examine ~200 chemicals with ToxCast, ExpoCast and HTTK
• HTTK was rate limiter on number of chemicals
• “A Proof-of-Concept Case Study Integrating Publicly Available Information to Screen Candidates for 

Chemical Prioritization under TSCA”
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Replacing Animal Testing with NAMs

• “To aggressively pursue a reduction in animal testing, I am 
directing leadership and staff in the Office of Chemical 
Safety and Pollution Prevention and the Office of Research 
and Development [ORD] to prioritize … the reduction of 
animal testing while ensuring protection of human health 
and the environment.”

• “These new approach methods (NAMs), include any 
technologies, methodologies, approaches or combinations 
thereof that can be used to provide information on 
chemical hazard and potential human exposure that can 
avoid or significantly reduce the use of testing on animals”
• NAMs for filling information gaps for decision-making
• integrating data steams into chemical risk assessment
• making the information publicly available
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We Still Need Toxicokinetics and Exposure

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

“Translation of high-throughput data into risk-
based rankings is an important application of 
exposure data for chemical priority-setting. 

Recent advances in high-throughput 
toxicity assessment, notably the ToxCast 
and Tox21 programs… and in high-

throughput computational exposure 
assessment [ExpoCast] have enabled 
first-tier risk-based rankings of

chemicals on the basis of margins 
of exposure” -

NASEM (2017)

National Academies 
of Sciences, 
Engineering, and 
Medicine (NASEM)
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Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetic

s

Lower
Risk

Medium 
Risk

Higher
Risk

Chemicals Monitored by CDC NHANES

High throughput in vitro 
screening can estimate doses 
needed to cause bioactivity
(e.g., Wetmore et al., 2015)

Exposure intake rates  can 
be inferred from 
biomarkers
(e.g., Ring et al., 2018)

10

10-3

10-7

Es
tim

at
ed

 E
qu

iv
al

en
t D

os
e 

or
 P

re
di

ct
ed

 E
xp

os
ur

e 
(m

g/
kg

 B
W

/d
ay

)

Ring et al. (2017)

Chemical Prioritization NAMs
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In Vitro - In Vivo Extrapolation 
(IVIVE)

IVIVE is the use of in vitro experimental data to predict phenomena in vivo 

• IVIVE-PK/TK (Pharmacokinetics/Toxicokinetics): 
• Fate of molecules/chemicals in body
• Considers absorption, distribution, metabolism, excretion (ADME)
• Uses empirical PK and physiologically-based (PBPK) modeling

• IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics): 
• Effect of molecules/chemicals at biological 

target in vivo
• Assay design/selection important
• Perturbation as adverse/therapeutic effect, 

reversible/ irreversible effeccts

• Both contribute to in vivo effect prediction

NRC (1998)
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics

... .
..
. .. . .1 2

CLmetab

CLGFR

Gut Lumen
Primary

Compartment

kabs

httk
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• Most chemicals do 
not have TK data –
we use in vitro HTTK 
methods adapted 
from pharma to fill 
gaps

• In drug development, 
HTTK methods allow 
IVIVE to estimate 
therapeutic doses for 
clinical studies –
predicted 
concentrations are 
typically on the order 
of values measured in 
clinical trials (Wang, 
2010)

In Vitro Data for HTTK

The rate of 
disappearance of 
parent compound 

(slope of line) is the 
hepatic clearance

(µL/min/106

hepatocytes)

We perform the 
assay at 1 and 10 µM 

to check for 
saturation of 
metabolizing 

enzymes.

10 µM

1 µM

0 50 100 150

Lo
g 

Co
nc

(µ
M

)

Cryopreserved 
hepatocyte 
suspension

Shibata et al. 
(2002)

Cryopreserved
Hepatocytes

(10 donor pool)

Add Chemical
(1 and 10 µM)

Remove 
Aliquots at 
15, 30, 60, 

120 min

Analytical 
Chemistry
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• Most chemicals do 
not have TK data –
we use in vitro HTTK 
methods adapted 
from pharma to fill 
gaps

• In drug development, 
HTTK methods allow 
IVIVE to estimate 
therapeutic doses for 
clinical studies –
predicted 
concentrations are 
typically on the order 
of values measured in 
clinical trials (Wang, 
2010)

In Vitro Data for HTTK
Cryopreserved 

hepatocyte 
suspension

Shibata et al. 
(2002)

Cryopreserved
Hepatocytes

(10 donor pool)

Add Chemical
(1 and 10 µM)

Remove 
Aliquots at 
15, 30, 60, 

120 min

Analytical 
Chemistry

Add plasma
(6 donor pool) 

to one well

Add chemical Determine 
concentration 
in both wells 

(analytical 
chemistry)

Double-wells 
connected by 

semi-permeable 
membrane on a 

RED Plate

Incubate 
plates 

come to 
equilibrium

.
.. .
..
. ..

.
.

2

1
,

well

well
pub C

CF =

1 2
Rapid 

Equilibrium 
Dialysis (RED) 
Waters et al. 

(2008)
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• Environmental 
chemicals:

Rotroff et al. (2010) 35
chemicals

Wetmore et al. (2012) 
+204 chemicals 

Wetmore et al. (2015) 
+163 chemicals

Wambaugh et al. (2019)  
+389 chemicals

In Vitro Data for HTTK
Cryopreserved 

hepatocyte 
suspension

Shibata et al. 
(2002)

Cryopreserved
Hepatocytes

(10 donor pool)

Add Chemical
(1 and 10 µM)

Remove 
Aliquots at 
15, 30, 60, 

120 min

Analytical 
Chemistry

Add plasma
(6 donor pool) 

to one well

Add chemical Determine 
concentration 
in both wells 

(analytical 
chemistry)

Double-wells 
connected by 

semi-permeable 
membrane on a 

RED Plate

Incubate 
plates 

come to 
equilibrium

.
.. .
..
. ..

.
.

2

1
,

well

well
pub C

CF =

1 2
Rapid 

Equilibrium 
Dialysis (RED) 
Waters et al. 

(2008)

• Most chemicals do 
not have TK data –
we use in vitro HTTK 
methods adapted 
from pharma to fill 
gaps
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Building Confidence in TK Models

Predicted Concentrations
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Chemical 
Specific 
Model

Cohen Hubal et al. (2018)

• To evaluate a chemical-specific TK model for “chemical x” you can 
compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data
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Building Confidence in TK Models

Predicted Concentrations
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• To evaluate a chemical-specific TK model for “chemical x” you can 
compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data
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Building Confidence in TK Models

Predicted Concentrations
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• To evaluate a chemical-specific TK model for “chemical x” you can 
compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data

• We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
• We do expect larger uncertainty, but also greater confidence in 

model implementation 
• Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
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Building Confidence in TK Models

• To evaluate a chemical-specific TK model for “chemical x” you can 
compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data

• We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
• We do expect larger uncertainty, but also greater confidence in 

model implementation 
• Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
• Can consider using model to extrapolate to other situations 

(chemicals without in vivo data) Predicted Concentrations
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Building Confidence in TK Models

Predicted Concentrations
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• To evaluate a chemical-specific TK model for “chemical x” you can 
compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data

• We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
• We do expect larger uncertainty, but also greater confidence in 

model implementation 
• Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
• Can consider using model to extrapolate to other situations 

(chemicals without in vivo data)
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Evaluation Example

• We estimate clearance from two 
processes – hepatic metabolism 
(liver) and passive glomerular 
filtration (kidney)

• This appears to work better for 
pharmaceuticals than other 
chemicals:

• ToxCast chemicals are 
overestimated

• Non-pharmaceuticals may be 
subject to extrahepatic 
metabolism and/or active 
transport

Pharmaceuticals
Other Chemicals

Wambaugh et al. (2018)
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Toxicokinetic Triage:  When Does TK IVIVE 
Work?

 Through comparison to in vivo data, a cross-
validated (random forest) predictor of success or 
failure of HTTK has been constructed

 All chemicals can be placed into one of seven 
confidence categories
• Added categories for chemicals that do not 

reach steady-state or for which plasma binding 
assay fails

 Plurality of chemicals end up in the “on the order” 
bin (within a factor of 3.2x) which is consistent 
with Wang (2010)

Wambaugh et al. (2015)
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Uncertainty

Until I open the 
box, I don’t know 

what colors I 
have...

…especially if my 
six-year-old has 
been around.

Different crayons 
have different 

colors…
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Variability

Different crayons 
have different 

colors…

The “average” 
color may not 
even be in the 

box!
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Variability

Different crayons 
have different 

colors…

The “average” 
color may not 
even be in the 

box!
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Population simulator for HTTK

Ring et al. (2017)

Correlated Monte Carlo 
sampling of physiological 
model parameters built 
into R “httk” package 
(Pearce et al., 2017):

Sample NHANES 
biometrics for 
actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Slide from Caroline Ring (ToxStrategies)
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Population simulator for HTTK

Ring et al. (2017)

Correlated Monte Carlo 
sampling of physiological 
model parameters built 
into R “httk” package 
(Pearce et al., 2017):

Sample NHANES 
biometrics for 
actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Regression equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 

Slide from Caroline Ring (ToxStrategies)

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)
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Population simulator for HTTK

Predict physiological 
quantities

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Correlated Monte Carlo 
sampling of physiological 
model parameters built 
into R “httk” package 
(Pearce et al., 2017):

Sample NHANES 
biometrics for 
actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Regression equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 
(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 

PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)

Ring et al. (2017)Slide from Caroline Ring (ToxStrategies)
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Risk-Based Ranking for Total NHANES Population

Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk
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Office of Research and Development
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Life-stage and Demographic Variation in Exposure

• Wambaugh et al. (2014) made steady-
state inferences of exposure rate 
(mg/kg/day) from NHANES data for 
various demographic groups

Change in Exposure 
Relative to Total Population

Change in Exposure (mg/kg bodyweight/day)

Ring et al. (2017)

N
HA

N
ES

 C
he

m
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s
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Life-stage and Demographic Variation in TK

• Ring et al. (2017) made demographic-
specific predictions of change in plasma 
concentrations for a 1 mg/kg bw/day 
exposure

Change in Toxicokinetics (µM/unit exposure)

Change in Toxicokinetics 
Relative to Total Population

Ring et al. (2017)

N
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N
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he

m
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al
s
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Life-stage and Demographic Variation in Risk Priority

• Can calculate 
margin 
between 
bioactivity and 
exposure for 
specific 
populations

Change in Activity:Exposure Ratio

Ring et al. (2017)

Change in Risk Relative to 
Total Population

N
HA

N
ES

 C
he

m
ic

al
s
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Open Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high throughput 
toxicokinetics (httk)

• Available publicly for free statistical software 
R

• Allows in vitro-in vivo extrapolation (IVIVE) 
and physiologically-based toxicokinetics 
(PBTK)

• Human-specific data for 944 chemicals and 
rat-specific data for 171 chemicals 

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk


39 of 53 Office of Research and Development

Risk = Hazard x Exposure

Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput screening (Dix et 
al., 2006, Collins et al., 2008) + in 
vitro-in vivo extrapolation (IVIVE, 
Wetmore et al., 2012, 2015) can 
predict a dose (mg/kg bw/day) that 
might be adverse

Toxicokinetics

NRC (1983)
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Risk = Hazard x Exposure

Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput screening (Dix et 
al., 2006, Collins et al., 2008) + in 
vitro-in vivo extrapolation (IVIVE, 
Wetmore et al., 2012, 2015) can 
predict a dose (mg/kg bw/day) that 
might be adverse High throughput models exist to 

make predictions of exposure via 
specific, important pathways such 

as residential product use and diet

Need methods to forecast exposure for 
thousands of chemicals 
(Wetmore et al., 2015)

Toxicokinetics

NRC (1983)
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Limited Available Data for Exposure 
Estimation

Most chemicals lack public exposure-related data beyond production volume (Egeghy et al., 2012)

Office of Research and Development
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Indoor Air, Dust, Surfaces

Consumer
Products and Durable 

Goods

Food

Near-Field
Direct

Near-Field 
Indirect

Human
Ecological

Flora and Fauna

Dietary Far-Field

Direct Use
(e.g., surface cleaner)

Residential Use
(e.g. ,flooring)

RECEPTOR

MEDIA

EXPOSURE 
(MEDIA + RECEPTOR)

Ecological

Chemical Manufacturing and Processing

Environmental 
Release

USE and RELEASE

Other Industry

Occupational

Occupational 
Use

Waste

Drinking 
Water

Outdoor Air, Soil, Surface and Ground 
Water

Understanding Exposure is a Systems 
Problem

• Exposure event unobservable: Can try to predict exposure by characterizing pathway
• Some pathways have much higher average exposures: In home “Near field” sources 

significant (Wallace, et al., 1987)



43 of 53 Office of Research and Development

Makes Use of

Exposure NAM Class Description Traditional Approach M
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Measurements New techniques including screening analyses 
capable of detecting hundreds of chemicals 
present in a sample

Targeted (chemical-specific) analyses - • • • •

Toxicokinetics High throughput methods using in vitro data to 
generate chemical-specific models

Analyses based on in vivo animal studies • - • •

HTE Models Models capable of making predictions for 
thousands of chemicals

Models requiring detailed, chemical- and 
scenario-specific information

• • - •

Chemical Descriptors Informatic approaches for organizing chemical 
information in a machine-readable format

Tools targeted at single chemical analyses by 
humans

- •

Evaluation Statistical approaches that use the data from 
many chemicals to estimate the uncertainty in 
a prediction for a new chemical 

Comparison of model predictions to data on a 
per chemical basis

• • • • - •

Machine Learning Computer algorithms to identify patterns Manual Inspection of the Data • • • -

Prioritization Integration of exposure and other NAMs to 
identify chemicals for follow-up study

Expert decision making • • • • • •

New Approach Methodologies for Exposure Science

Wambaugh et al., (2019)
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What Do We Know About Exposure?
Biomonitoring Data

• Centers for Disease Control and Prevention (CDC) National Health and Nutrition Examination Survey 
(NHANES) provides an important tool for monitoring public health

• Large, ongoing CDC survey of US population: demographic, body measures, medical exam, 
biomonitoring (health and exposure), …

• Designed to be representative of US population according to census data

• Data sets publicly available (http://www.cdc.gov/nchs/nhanes.htm)

• Includes measurements of:

• Body weight
• Height
• Chemical analysis of blood and urine
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What Do We Know About Exposure?
Exposure Models

“Now it would be very remarkable if any system existing in the real world could be exactly represented by 
any simple model. However, cunningly chosen parsimonious models often do provide remarkably useful 
approximations… The only question of interest is ‘Is the model illuminating and useful?’” George Box

• Human chemical exposures can be coarsely grouped into “near field” sources that are close to the 
exposed individual (consumer or occupational exposures) ‘far-field’ scenarios wherein individuals are 
exposed to chemicals that were released or used far away (ambient exposure) (Arnot et al., 2006). 

• A model captures knowledge and a hypothesis of how the world works (MacLeod et al., 2010)

• EPA’s EXPOsure toolBOX (EPA ExpoBox) is a toolbox created to assist individuals from within 
government, industry, academia, and the general public with assessing exposure
• Includes many, many models
https://www.epa.gov/expobox
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Evaluation NAMs:  The SEEM Framework

• We use Bayesian methods to incorporate multiple models into consensus predictions for 
1000s of chemicals within the Systematic Empirical Evaluation of Models (SEEM)
(Wambaugh et al., 2013, 2014; Ring et al., 2018)
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Heuristics of Exposure

Wambaugh et al. (2014) R2 ≈ 0.5 indicates that we can predict 
50% of the chemical to chemical 
variability in median NHANES 
exposure rates

Same five predictors work for all 
NHANES demographic groups 
analyzed – stratified by age, sex, and 
body-mass index:

• Industrial and Consumer use
• Pesticide Inert
• Pesticide Active
• Industrial but no Consumer 

use
• Production Volume
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Correlation is Not Causation

• Wambaugh et al. (2014) found that “pesticide inerts” 
had higher than average levels in biomonitoring data, 
while “pesticide actives” had lower than average

• In World War II, there Royal Air Force (UK) wanted to 
armor planes against anti-aircraft fire
• Initial proposal was to place armor wherever 

bullet holes were most common
• Mathematician Abraham Wald pointed out that 

they were looking at the planes that had returned
• See Drum, Kevin (2010) “The Counterintuitive 

World”

• Pesticide inerts have many other uses, but there are 
more stringent reporting requirements for pesticides
• Exposure is occuring by other pathways
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Knowledge of Exposure Pathways Limits 
High Throughput Exposure Models

“In particular, the 
assumption that 100% 
of [quantity emitted, 

applied, or ingested] is 
being applied to each 

individual use scenario 
is a very conservative 
assumption for many 

compound / use 
scenario pairs.”
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Chemical Use Identifies Relevant Pathways

>2000 chemicals with Material Safety Data Sheets 
(MSDS) in CPCPdb (Goldsmith et al., 2014)
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Some pathways have 
much higher average 

exposures!

Near-Field Dietary Far-Field EcologicalOccupational

Near field sources have been known to be important at least since 1987 –
see Wallace, et al.
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Chemical Property NAMs

Broad “index” of chemical uses

MSDS 
Data

Measured 
Data

Ingredient 
Lists 

CPCat

Occurrence 
data

Occurrence and 
quantitative 
chemical composition

CPDat
Functional 
Use Data

The roles that 
chemicals serve in 
products

Measurement of chemicals in 
consumer products

https://comptox.epa.gov/dashboard
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• Tox21: Testing one assay across 10,000 chemicals takes 1-2 days, but only 50 assays have been 
developed so far that can run that fast

• ToxCast: ~1100 off-the-shelf (pharma) assay-endpoints tested for up to 4,000 chemicals over the past 
decade, now developing new assays as well

HTS tox assays often use single readout, such as fluorescence, across many chemicals, measuring 
concentration for toxicokinetics or exposure requires chemical-specific methods…

• ExpoCast: Ring et al. made in silico predictions for ~480,000 chemicals from structure, but based on 
NHANES monitoring for ~120 chemicals
• Quantitative non-targeted analysis (NTA) may eventually provide greater evaluation data to 

reduce uncertainty

• HTTK: In vitro data on 944 chemicals collected for humans, starting with Rotroff et al. (2010)
• Work continues to develop in silico tools, e.g. Sipes et al. (2016)

What is “High Throughput”?

Our work is not done…
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Summary

 A tapestry of laws covers the chemicals people are exposed to 
in the United States (Breyer, 2009)

 Most other chemicals, ranging from industrial waste to dyes to 
packing materials, are covered by the recently updated Toxic 
Substances Control Act (TSCA) and administered by the EPA

 New approach methodologies (NAMs) are being developed to 
prioritize these existing and new chemicals for testing

 All data are being made public:
• The CompTox Chemicals Dashboard (A search engine for 

chemicals) http://comptox.epa.gov/
• R package “httk”: https://CRAN.R-project.org/package=httk

The views expressed in this presentation are those of the authors 
and do not necessarily reflect the views or policies of the U.S. EPA

Potential 
Exposure Rate

mg/kg BW/day

Potential hazard 
from in vitro

converted to dose 
by  HTTK

Lower
Risk

Medium 
Risk

Higher
Risk

http://comptox.epa.gov/
https://cran.r-project.org/package=httk
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