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Chapter 6 Stream Hydraulics

654.0600	 Purpose

Human intervention in the stream environment, espe-
cially with projects intended to restore a stream eco-
system to some healthier state, must fully consider the 
stream system, stream geomorphology, stream ecol-
ogy, stream hydraulics, and the science and mechanics 
of streamflow. This chapter provides working profes-
sionals with practical information about hydraulic 
parameters and associated computations. It provides 
example calculations, as well as information about the 
role of hydraulic engineers in the design process.

The hydraulic parameters used to evaluate and quan-
tify streamflow are described in this chapter. The 
applicability of the various hydraulic parameters in 
planning and design in the stream environment is 
presented. The complexity of streamflow is addressed, 
as well as simplifying assumptions, their validity, and 
consequences. Guidance is provided for determining 
the level of analysis commensurate with a given proj-
ect’s goals and the associated hydraulic parameters. 
Finally, a range of analytical tools is described, the 
application of which depends on the complexity of the 
project.

Stream hydraulics is a complex subject, however, and 
this chapter does not provide exhaustive coverage of 
the topic. Readers are encouraged to supplement this 
information with the many good references that are 
available.

654.0601	 Introduction

Stream hydraulics is the combination of science and 
engineering for determining streamflow behavior at 
specific locations for purposes including solving prob-
lems that generally originate with human impacts. A 
location of interest may be spatially limited, such as at 
a bridge, or on a larger scale such as a series of chan-
nel bends where the streambanks are eroding. Flood 
depth, as well as other hydraulic effects, may need to 
be determined over long stretches of the channel.

An understanding of flowing water forms the basis for 
much of the work done to restore streams. The disci-
pline of hydrology involves the determination of flow 
rates or amounts, their origin, and their frequency. 
Hydraulics involves the mechanics of the flow and, 
given the great power of flowing water, its affect on 
bed, banks, and structures.

A stream is a natural system that constantly adjusts 
itself to its environment and participates in a cycle 
of action and reaction. These adjustments may be 
gradual, less noticeable, and long term, or they may be 
sudden and attention grabbing. The impacts causing a 
stream to react may be natural, such as a rare, intense 
rainfall, or human-induced, such as the straighten-
ing of a channel or filling of a wetland. However, the 
reaction of a stream to either kind of change may be 
more than localized. A stream adjusts its profile, slope, 
sinuosity, channel shape, flow velocity, and boundary 
roughness over long sections of its profile in response 
to such impacts. After an impact, a stream may restore 
a state of equilibrium in as little as a week, or it may 
take decades.

(a)	 Hydraulics as physics

Stream characteristics are derived from the basic 
physics of flowing water. Fluid mechanics is an old 
science with well-established physical relationships. 
Typically, simple empirical equations are used that do 
not account for all the variability that occurs in the 
flow. An example is Bernoulli’s equation for balanc-
ing flow depth, velocity, and pressure. In this case, 
the flow must be considered steady. If it is important 
to assess how flow depth, velocity, and/or pressure 
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change over time, Bernoulli’s equation by itself will not 
be sufficient.

The assumption that flow velocity is generally down-
stream in direction is also a common simplification in 
the analysis of streamflow. Real streams have many 
eddies where the flow circulates horizontally. Streams 
also have areas of upwelling, roiling, and vertical 
circulation. While designers commonly make use of 
an average velocity at a given cross section, the actual 
velocities in the plane of a cross section vary markedly 
from top to bottom, side to side, and in direction, vary-
ing with time and three-dimensional space.

Water surface profile analyses generally assume a con-
stant flow elevation across a given cross section. Real 
streams, however, super-elevate their water surfaces 
in curved channel sections and may set up significant 
surface wave patterns that defy prediction. Finally, hy-
draulic analyses often assume that water flows against 
a fixed boundary. Real streams actually readjust their 
bed and banks constantly, move significant amounts 
of sediment, and transport unpredictable amounts of 
natural or humanmade debris.

It is, therefore, important to understand the limitations 
and restrictions of any equations before using them to 
obtain necessary information.

(b)	 Hydraulics as empiricism

Although thoroughly founded in physics, many hydrau-
lic relationships require empirical coefficients to ac-
count for unmeasured or estimated processes. One of 
the parameters that has a significant influence on hy-
draulic calculations is surface roughness, in the form 
of Manning’s n value, the Chézy C, or the Darcy-Weis-
bach friction factor. While the Darcy-Weisbach friction 
factor is generally considered to be more theoretically 
based, Manning’s n is more commonly used for most 
stream design and restoration analysis. Roughness is 
a function of many stream physical properties includ-
ing bed sediment size, vegetation, channel sinuosity, 
channel irregularity, and suspended sediment load. As 
a result, many of the estimates have inherent degrees 
of empiricism in their estimate.

Sediment transport also requires empirical input. Sedi-
ment particles vary in size and properties, from tiny 
silt particles that adhere to large boulders, sometimes 

redirecting a stream and sometimes transported down-
stream. Sediment transport is influenced by velocity 
vectors near the water/sediment boundary, and these 
bed velocities may not be well predicted by an average 
cross-sectional velocity. Many of the analytical sedi-
ment predictive techniques include many empirical 
estimates of specific parameters. More information on 
the analytical, as well as empirical approaches to sedi-
ment transport, is provided in other chapters of this 
handbook. More information on sedimentation analy-
sis is provided in NEH654.09 and NEH654.13.

Introduction to Stream Hydraulics – C03-059 

6-2 



645.0602	 Channel cross-
sectional parameters

A variety of channel cross-sectional parameters are 
used in the hydraulic analysis of streams and rivers. It 
is important to measure and use these parameters con-
sistently and accurately. A generalized cross section is 
shown in figure 6–1.

The flow depth is the distance between the channel 
bottom and the water surface. For rectangular chan-
nels, the depth is the same across an entire cross sec-
tion, but it obviously varies in natural channels. Depth 
is often measured relative to the channel thalweg (or 
lowest point). Normal depth is the depth of flow in a 
uniform channel for which the water surface is normal 
or parallel to the channel profile and energy slope.

For a cross section aligned so that streamlines of flow 
are perpendicular, the flow area is the area of the cross 
section between bed and banks and water surface. For 
a rectangular channel, flow area is depth multiplied 
by top width. For a natural channel cross section, the 
area may be approximated with the sum of trapezoidal 
areas between cross-sectional points. The top width of 
a channel cross section at the water surface, typically 
designated as T, is a factor in the hydraulic depth.

The hydraulic depth is the ratio of the cross-sectional 
area of flow to the free water surface or top width. The 
hydraulic depth, d, is generally used either in comput-
ing the Froude number or in computing the section 
factor for critical depth. Since only one critical depth 
is possible for a given discharge in a channel, the sec-
tion factor, Z, can be used to easily determine it (Chow 
1959).

	 Z = 
A

d
	 (eq. 6–1)

	 Q Z gcritical = 	 (eq. 6–2)

For a cross section normal to the direction of flow, 
the wetted perimeter (typically designated P) is the 
length of cross-sectional boundary between water and 
bed and banks. The hydraulic radius is the ratio of the 
cross-sectional area of flow to the wetted perimeter or 
flow boundary. The hydraulic radius, R= A/P, is used 
in Manning’s equation for calculation of normal depth 
discharge, as well as for calculation of shear velocity.

Velocity is a physics term for a change in distance 
during a time interval. Flow velocity refers to the 
areal extent of the flow (in a cross section) for which 
a velocity is specified. For example, an average veloc-
ity that applies to an entire cross-sectional area may 
be determined from V = Q/A or if the discharge is 
unknown, a uniform flow velocity may be determined 
from Manning’s equation.

Figure 6–1	 Channel cross-sectional parameters (per ft of channel length)
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Another useful formulation is critical velocity, which 
is average flow velocity at critical depth, and is calcu-
lated from equation 6–3:

	 V gdcr cr= 	 (eq. 6–3)

where:
V

cr	
=	critical velocity

g	 =	gravitational acceleration
d

cr
	 =	critical depth

Determining the state of flow is a matter of determin-
ing whether the velocity is greater than critical veloc-
ity V

cr
 (supercritical flow) or less than critical velocity 

V
cr

 (subcritical flow).

Conveyance is a measure of the flow-carrying capac-
ity of a cross section which is directly proportional to 
discharge. Conveyance, typically designated K, may be 
expressed from Manning’s equation (without the slope 
term) as:

	 K AR  
n

=
1 486 2

3
.

	 (eq. 6–4a)

or

	 K
Q

S
= 	 (eq. 6–4b)

where:
A	 =	flow area (ft2)
R	 =	hydraulic radius (ft)
Q	 =	flow rate (ft3/s)
S	 =	slope, dimensionless

In backwater calculations, change in conveyance from 
cross section to cross section is a useful way to de-
termine the adequacy of section spacing in a stream 
reach. Within a cross section, conveyance may be used 
to compare channel and overbank flow carrying capac-
ity.

654.0603	 Dimensionless ratios

Dimensionless ratios (also referred to as dimension-
less numbers) are used to provide information on flow 
condition. The units of the variables used in the equa-
tion for a dimensionless ratio are such that they can-
cel. The two most commonly used ratios are Froude 
and Reynolds numbers. Being dimensionless allows 
their application to be made across a variety of scales.

(a)	 Froude number

The Froude number is a dimensionless ratio, relat-
ing inertial forces to gravitational forces. The Froude 
number represents the effect of gravity on the state of 
flow in a stream (Chow 1959). This useful number was 
derived by a nineteenth century English scientist, Wil-
liam Froude, who studied the resistance of ships being 
towed in water. He observed wave patterns along the 
hull of a moving ship and found that the same number 
of waves would occur as long as the ratio of the ship’s 
speed to the square root of its length were the same. 
Applied in hydraulics, the length is replaced by hy-
draulic depth, as shown in equation 6–5. 

	 F
V

gd
= 	 (eq. 6–5)

where:
V	 =	velocity (ft/s)
g	 =	acceleration due to gravity (32.2 ft/s2)
d	 =	flow depth (ft)

If the Froude number is less than one, gravitational 
forces dominate and the flow is subcritical, and if 
greater than one, inertial forces dominate and the 
flow is supercritical. The Froude number is used to 
determine the state of flow, since, for subcritical flow 
the boundary condition is downstream, and for super-
critical flow it is upstream. When the Froude number 
equals one, the flow is at the critical state.

(b)	 Reynolds number

The Reynolds number is also a dimensionless ratio, 
relating the effect of viscosity to inertia, used to deter-
mine whether fluid flow is laminar or turbulent (Chow 
1959). The Reynolds number relates inertial forces to 

Introduction to Stream Hydraulics – C03-059 

6-4 



viscous forces and was derived by a nineteenth centu-
ry English scientist, Osborne Reynolds, for use in wind 
tunnel experiments.

Inertia is represented in equation 6–6 by the product 
of velocity and hydraulic radius, divided by the kine-
matic viscosity of water, with units of length squared 
per time. For turbulent flow Re>2000, for laminar, 
Re<500, and values between these limits are identified 
as transitional.

	 Re =
VR

ν
	 (eq. 6–6)

where:
V	 =	velocity (ft/s)
R	 =	hydraulic radius (ft)
ν	 =	kinematic viscosity (ft2/s)

For use in sediment transport analysis, the Reynolds 
number has been formulated to apply at the water-
sediment boundary. In this case, the velocity is local to 
the boundary and termed shear velocity (V

*
). Also, the 

length term is not the hydraulic radius, but roughness 
height, or the diameter of particles (D) forming the 
boundary. This boundary Reynolds number has also 
been called the bed Reynolds number or shear Reyn-
olds number.

	 Re *
bed

V D
=

ν
	 (eq. 6–7)

where:
V

*
	 =	boundary shear velocity (ft/s)

D	 =	particle diameter
ν 	 =	kinematic viscosity (ft2/s)

Because streamflow is almost exclusively turbulent, 
the Reynolds number is not needed as a flag of turbu-
lence. The Reynolds number has value for sedimenta-
tion analyses in that drag coefficients have been empir-
ically related to Reynolds number. Another important 
use in sedimentation involves incipient motion of sedi-
ment particles. Studies have related the bed Reynolds 
number to critical shear stress (the initiation point of 
sediment movement). Through the Shields diagram, 
for example, one can determine critical shear, given a 
bed Reynolds number. Additional information on this 
topic is provided in NEH654.13.

654.0604	 Continuity

Open channel flow has a liquid surface that is open 
to the atmosphere. This boundary is not fixed by the 
physical boundaries of a closed conduit. Water is es-
sentially an incompressible fluid, so it must increase or 
decrease its velocity and depth to adjust to the chan-
nel shape. If no water enters or leaves a stream (a sim-
plification that can be made over short distances) the 
quantity of the flow will be the same from section to 
section. Since the flow is incompressible, the product 
of the velocity and cross-sectional area is a constant. 
This conservation of mass can be written as the conti-
nuity equation as follows:

	 Q VA= 	 (eq. 6–8)

While the continuity equation can be used with any 
consistent set of units, it is normally expressed as:

Q	 =	quantity of flow (ft3/s)
A	 =	cross-sectional area (ft2))
V	 =	average velocity (ft/s)
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624.0605	 Energy

Energy, an abstract quantity basic to many areas of 
physics, is a property of a body or physical system 
that enables it to move against a force. It is an expres-
sion of work, which is force applied over a distance. 
Energy is the amount of work required to move a 
mass through a distance. Or, it is the amount of work a 
physical system is capable of doing, in changing from 
its actual state to some specified reference state.

Many useful concepts of energy exist, the primary 
one being that, in a closed system, the total energy is 
constant, the concept of conservation of energy. Water 
energy is comprised of a number of components, often 
called head and expressed as a vertical distance. The 
potential energy of water, or pressure head, is a re-
sult of its mass and the Earth’s gravitational pull. The 
kinetic energy of water is related to its movement and 
is called the velocity head.

The Bernoulli equation (eq. 6–9) is an expression of 
the conservation of energy.

	 z y
V

g
z y

V

g
hL1 1 1

1
2

2 2 2
2
2

2 2
+ + = + + +α α 	 (eq. 6–9)

This expression shows the interrelationship of these 
energy terms, between two cross sections (1 and 2). 
Each term represents a form of energy, with depth 
y representing potential energy, the velocity term V 
representing kinetic energy, and z, a potential energy 
term relating all to a common datum in a plane perpen-
dicular to the direction of gravity. The head loss or h

L
 

term is called a loss because any energy consumed be-
tween the two cross sections must be made up for by a 
change in height (or head). The head loss is the energy 
consumed by boundary friction, turbulence, eddies, 
or sediment transport. The velocity term represents 
velocity head and the depth term the pressure head.

Although energy is a scalar quantity, without direction, 
the concept of energy as head has an orientation in the 
direction of gravity. Pressure, however, represents the 
magnitude of a force in the direction of whatever sur-
face it impinges. So, as a channel slope steepens, the 
orientation of the pressure head is technically moving 
further from vertical. It is represented by the depth 
times the cosine of the slope angle. For most natural 

channels, the channel slope is sufficiently gradual for 
this angle to be small enough to be ignored. However, 
in slopes that are greater than 10 percent, this may 
become an issue that should be addressed.

Another assumption is that flow is always perpen-
dicular to the cross sections. Finally, alpha (α) in the 
equation is the energy coefficient, and it varies with 
the uniformity of velocity vectors in the cross section. 
For a fairly uniform velocity, alpha may be taken to be 
one. If velocity varies markedly over the cross sec-
tion, alpha may go as high as 1.1 in sections of sudden 
expansion or contraction (Chow 1959).

Specific energy is a particular concept in hydraulics 
defined as the energy per unit weight of water at a 
given cross section with respect to the channel bot-
tom.

As shown in figure 6–2, specific energy can be helpful 
in visualizing flow states of a stream. The points d

1
 

and d
2
 are alternate depths for the same energy level. 

Only one depth exists at the critical state, which is the 
lowest possible energy level for a given discharge. In 
natural streams, this is an unstable state since a very 

Figure 6–2	 Specific energy vs. depth of flow
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small change in energy results in a relatively signifi-
cant undulating change in depth. An understanding of 
flow energy is fundamental in hydraulic modeling.

The specific energy at any cross section for a channel 
of small slope (most natural channels) and α = 1 is:

	 E y
V

g
= +

2

2
	 (eq. 6–10)

654.0606	 Momentum

In basic physics, momentum is the mass of a body 
times its velocity and is a vector quantity, whereas 
energy is scalar, lacking a direction. In hydraulics, the 
use of this concept is due mainly to the implication of 
Newton’s second law, that the resultant of all forces 
acting on a body causes a change in momentum. The 
momentum equation in hydraulics is similar in form 
to the energy equation and, when applied to many 
flow problems, can provide nearly identical results. 
However, knowledge of fundamental differences in the 
two concepts is critical to modeling certain hydraulic 
problems. Conceptually, the momentum approach 
should be thought of as involving forces on a mass of 
flowing water, instead of the energy state at a particu-
lar location. Friction losses in momentum relate to the 
force resistance met by that mass with its boundary, 
whereas in the energy concept, losses are due to inter-
nal energy dissipation (Chow 1959).

The momentum equation can have advantages in 
modeling flow over weirs, drops, hydraulic jumps, and 
junctions, where the predominate friction losses are 
due to external forces, rather than internal energy dis-
sipation.

Interpreted for open channel, Newton’s second law 
states that the rate of momentum change in this short 
section of channel equals the sum of the momentum 
of flow entering and leaving the section and the sum 
of the forces acting on the water in the section. Since 
momentum is mass times velocity, the rate of change 
of momentum is the mass rate of change times the 
velocity. The momentum equation may be written con-
sidering a small mass or slug of flowing water between 
two sections 1 and 2 and the principle of conservation 
of momentum.

	 ρ β β θQ V V P P W Ffr2 2 1 1 1 2−( ) = − + −sin 	 (eq. 6–11)

The left side of the equation is the momentum entering 
and leaving, and the right side is the pressure force at 
each end of the mass, with Wsinθ being the weight of 
the mass, θ being the angle of the bottom slope of the 
channel, and F

fr
 being the resistance force of friction 

on the bed and banks.
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654.0607	 Specific force 

Specific force is the horizontal force of flowing water 
per unit weight of water. It is derived from the mo-
mentum equation. A specific force curve looks similar 
to the specific energy curve. The critical depth occurs 
both at the minimum energy for a given discharge 
and also at the minimum specific force for a given 
discharge. This similarity shows how energy concepts 
and force or momentum concepts can be employed 
similarly in many hydraulic analyses, often with nearly 
identical results.

The designer should know what circumstances would 
cause the two approaches to diverge, however. Spe-
cific force concepts are applied over short horizontal 
reaches of channel, where the difference in external 
friction forces and force due to the weight of water are 
negligible. Examples are the flow over a broad-crested 
weir through a hydraulic jump or at junctions. One 
way to conceptualize why a momentum-based method, 
rather than an energy-based method, might be more 
applicable would be to energy changes in a hydraulic 
jump. Much energy is lost through turbulence caused 
by moving mass colliding with other mass that is not 
accounted for by energy principles alone.

An equation for specific force may be derived from 
the momentum equation. If the practitioner wishes to 
apply this equation to short sections of channel such 
as a weir or hydraulic jump, the frictional resistance 
forces, F

fr
 can be neglected. With a flat channel of low 

slope, θ approaches 0, then the last two terms in equa-
tion 6–12 can be dropped. As a result, equation 16–11 
becomes:

	 ρ β βQ V V P P2 2 1 1 1 2−( ) = − 	 (eq. 6–12)

Assume also that the Boussinesq coefficient (β) is 1. 
From the fact that the pressure increases with depth 
to the maximum of ρgy at the channel bottom (y be-
ing depth, b being channel width, and ρ being fluid 
density), the overall pressure on the vertical flow area 
may be expressed as 1/2ρgby2. The velocities may be 
expressed as Q/A. For a rectangular channel:

	 ρ
ρ

Q
Q

A

Q

A

g
A y A y

2 1
1 1 2 22

−






= −( ) 	 (eq. 6–13)

that becomes:

	
2 22

1
1 1

2

2
2 2

Q

gA
A y

Q

gA
A y+ = + 	 (eq. 6–14)

For a channel section of any other shape, the resultant 
pressure may be taken at the centroid of the flow area, 
at a depth, z, from the surface. Then the momentum 
formulation is:

	
Q

gA
A z

Q

gA
A z

2

1
1 1

2

2
2 2+ = + 	 (eq. 6–15)

Either side of this equation is the definition of specific 
force, and the specific force is constant over a short 
stretch of channel such as a hydraulic jump. The first 
term represents change in momentum over time, and 
the second term the force of the water mass. As Chow 
(1959) explains, specific force is sometimes called 
force plus momentum or momentum flux.
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654.0608	 Stream power

Stream power is a geomorphology concept that is a 
measure of the available energy a stream has for mov-
ing sediment, rock, or woody material. For a cross sec-
tion, the total stream power per unit length of channel 
may be formulated as:

	
Ω =

=
γ
γ
QS

vwdS
f

f

	 (eq. 6–16)

where:
γ	 =	unit weight of water (lb/ft3)
Q	 =	discharge (ft3/s)
S

f
 	 =	energy slope (ft/ft)

v	 =	velocity (ft/s)
w	 =	channel width (ft)
d	 =	hydraulic depth (ft)

English units are pounds per second per foot of chan-
nel length. A second formulation, unit stream power, is 
the stream power per unit of bed area:

	 Ω = τ0 v 	 (eq. 6–17)

where:
τ	 =	bed shear stress
v	 =	average velocity

A third formulation relates stream power per unit 
weight of water:	

	 Ω = S vf 	 (eq. 6–18)

where the terms are as previously defined.

654.0609	 Hydraulic computations

(a)	 Uniform flow

Water flowing in an open channel typically gains 
kinetic energy as it flows from a higher elevation to 
a lower elevation. It loses energy with friction and 
obstructions. Uniform flow occurs when the gravita-
tional forces that are pushing the flow along the chan-
nel are in balance with the frictional forces exerted by 
the wetted perimeter that are retarding the flow. For 
uniform flow to exist:

•	 Mean velocity is constant from section to  
section.

•	 Depth of flow is constant from section to  
section.

•	 Area of flow is constant from section to  
section.

Therefore, uniform flow can only truly occur in very 
long, straight, prismatic channels where the terminal 
velocity of the flow is achieved. In many cases, the 
flow only approaches uniform flow.

Since uniform flow occurs when the gravitational 
forces are exactly offset by the resistance forces, a 
resistance equation can be used to calculate a veloc-
ity. The most commonly used resistance equation is 
Manning’s equation (eq. 6–19). 

	 Q AR S  
n

=
1 486 2

3
1
2

. 	 (eq. 6–19)

given	 Q VA=

then	 V R S=
1 486 2

3
1
2

.

n
	 (eq. 6–20)

where:
A	 =	flow area (ft2)
R	 =	hydraulic radius (ft)
S	 =	channel profile slope (ft/ft)
n	 =	roughness coefficient

The 1.486 exponent is replaced by 1.0 if SI units are 
used. The flow area (A) and the hydraulic radius (R) 
relate how the flow interacts with the boundary.
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A rough estimate of the flow capacity or average veloc-
ity at a natural cross section may be determined with 
Manning’s equation. A designer may assume a roughly 
trapezoidal cross section, estimating bottom width, 
side slopes, and profile slope from topographic maps. 
The roughness coefficient is a significant factor, and its 
determination is described in NEH654.0609(c).

(b)	 Determining normal depth

Normal depth calculation is one of the most commonly 
used analyses in stream restoration assessment and 
design. Several spreadsheets, computer programs, and 
nomographs are available for use in calculating normal 
depth. In a natural channel, with a nonuniform cross 
section, reliability of the normal depth calculation 
is directly related to the reliability of the input data. 
Sound engineering judgment is required in the selec-
tion of a representative cross section. The cross sec-
tion should be located in a uniform reach where flow 
is essentially parallel to the bank line (no reverse flow 
or eddies). This typically occurs at a crossing or riffle.

Determination of the average energy slope can be dif-
ficult. If the channel cross section and roughness are 
relatively uniform, surface slope can be used. Thalweg 
slopes and low-flow water surface slopes may not be 
representative of the energy slope at design flows. 
Slope estimates should be made over a significant 
length of the stream (a meander wavelength or 20 
channel widths). Hydraulic roughness is estimated 
based on field observations and measurements.

In addition to normal depth for a given discharge, 
these same procedures may be used to estimate aver-
age velocities in the cross section. These calculations 
do not account for backwater in a channel reach. The 
following example calculation refers to the cross sec-
tion shown in figure 6–3.

Example problem: Normal depth rating 
curve calculation

Problem 1: Calculate a normal depth rating curve for 
each foot of depth up to 5 feet. Assume channel slope 
= 0.0015 and an n value = 0.03

Solution:

For

	 Q AR S= 





1 49 2
3 0 5. .

n
, 

the value

	

1 49
1 9240 5.
..

n






=S
.

A and P need to be determined.

	 R
A

P
=

	
A1 30

1

2
15= × =  ft2

	
P1

2 2 0 5
2 15 1 30 07= +( ) =

.
.  ft

	 R1 0 499= .  ft

	
A2 15 30 1 1 3 48= + ×( ) + ×( ) =  ft2

	
P2

2 2 0 5
30 07 2 3 1 36 39= + +( ) =. .

.
 ft

	 R2 1 319= .  ft

	
A3 48 36 1 1 3 87= + ×( ) + ×( ) =  ft2

	
P3

2 2 0 5
36 39 2 3 1 42 71= + +( ) =. .

.
 ft

	 R3 2 037= .  ft

	
A4 87 42 1 1 3 132= + ×( ) + ×( ) =  ft2

	
P4

2 2 0 5
42 71 2 3 1 49 03= + +( ) =. .

.
 ft

	 R4 2 692= .  ft

	
A5 132 48 1 1 3 183= + ×( ) + ×( ) =  ft2

Figure 6–3	 Problem cross section

1
3

Five 1-ft increments

30 ft

15 ft
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Figure 6–4	 HEC–RAS screen shot for uniform flow computation

	
P5

2 2 0 5
49 03 2 3 1 55 36= + +( ) =. .

.
 ft

	 R5 3 306= .  ft

Solving for Q, then:

Q d1

0 667
1 924 15 0 499 18 1 1= × × ( ) = =. . .

.
 ft /s (at  ft)3

Q d2

0 667
1 924 48 1 319 111 1 2= × × ( ) = =. . .

.
 ft /s (at  ft)3

Q d3

0 667
1 924 87 2 037 269 0 3= × × ( ) = =. . .

.
 ft /s (at  ft)3

Q d4

0 667
1 924 132 2 692 491 6 4= × × ( ) = =. . .

.
 ft /s (at  ft)3

Q d5

0 667
1 924 183 3 306 781 7 5= × × ( ) = =. . .

.
 ft /s (at  ft)3

Problem 2: Determine the normal depth for a dis-
charge of 350 cubic feet per second and the associated 
average velocity.

Solution: From the rating curve calculated above, the 
350 cubic feet per second discharge in this problem 
will be between Q

3
 and Q

4
. A straight-line interpolation 

gives a depth of 3.4 feet.

For velocity, since Q VA=

	 V =
×( ) + ( ) − ( ) =

350

3 3 4 3 4 8 3 4 4
3 36

. . .
.  ft/s

Discussion:
The more complicated a section becomes, the more 
tedious is this hand calculation. Numerous computer 
programs, such as HEC–RAS (USACE 2001b), can 
perform normal depth calculations for a cross sec-
tion of many coordinate points. A typical image from 
HEC–RAS is shown as figure 6–4.
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(c)	 Determining roughness coefficient 
(n value)

The roughness coefficient, an empirical factor in 
Manning’s equation, accounts for frictional resistance 
of the flow boundary. Estimating this flow resistance 
is not a simple matter. This parameter is used in com-
putation of water surface profiles and estimation of 
normal depths and velocities.

Boundary friction factors must be chosen carefully, 
as hydraulic calculations are significantly influenced 
by the n choice. Factors affecting roughness include 
ground surface composition, vegetation, channel 
irregularity, channel alignment, aggradation or scour-
ing, obstructions, size and shape of channel, stage and 
discharge, seasonal change, and sediment transport.

Significant guidance exists in the literature regarding 
roughness estimation. Chow (1959) discusses four 
general approaches for roughness determination. 
The U.S. Geological Survey (USGS) (Arcement and 
Schneider 1990) published an extensive step-by-step 
guide for determination of n values. NRCS guidance 
for channel n value determination is available from 
Faskin (1963). Finally, when observed flow data and 
stages are known, manual calculations or a computer 
program such as HEC–RAS may be used to determine 
n values.

With the many factors that impact roughness, and 
each stream combining different factors to different 
extents, no standard formula is available for use with 
measured information. As stated in Chow (1959):

	 ...there is no exact method of selecting the 
n value. At the present stage of knowledge 
[1959], to select a value of n actually means 
to estimate the resistance to flow in a given 
channel, which is really a matter of intan-
gibles. To veteran engineers, this means the 
exercise of sound engineering judgment and 
experience; for beginners, it can be no more 
than a guess, and different individuals will 
obtain different results.

While there has been considerable research on esti-
mating roughness coefficients since 1959, flood plain 
and channel n values are still challenging to determine. 
In practice, to a large extent the selection of Manning’s 
n values remains judgement based.

Estimates of channel roughness may be made using 
photographs or tables provided by Chow (1959), Brat-
er and King (1976), Faskin (1963), and Barnes (1967). 
NEH–5 supplement B, Hydraulics, can also be used to 
estimate roughness values. As roughness can change 
dramatically between surfaces within the same cross 
section, such as between channel and overbanks, a 
determination of a composite value for the cross sec-
tion is necessary (Chow 1959). The choice of a channel 
compositing method is very important in stream res-
toration design where large differences exist in bank 
and bed roughness. While the following example uses 
the Lotter method, other methods, such as the equal 
velocity method and the conveyance method, can also 
be used.

Example problem: Composite Manning’s 
n value

Problem: Determine a composite n value for the cross 
section illustrated in figure 6–5 at the given depth of 
flow.

Assume that this channel is experiencing a 6,094 cubic 
feet per second flow, with 5,770 cubic feet per second 
in the main channel and the remainder on the right 
overbank. The mean velocity in the main channel is 2.3 
feet per second and on the overbank, 0.55 foot per sec-
ond. The channel slope is 0.00016, and a fairly regular 
profile of clay and silt is observed.

The channel is relatively straight and free of vegetation 
up to a stage of 10 feet. Above that level, both banks 
are lined with snags, shrubs, and overhanging trees. 
The right overbank is heavily timbered with standing 
trees up to 6 inches in diameter with significant for-
est litter. In stream work, the convention is that the 

Figure 6–5	 Cross-sectional dimensions

1
3
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left bank is on the left when looking downstream. See 
figures 6–6 and 6–7 where the photos are taken at a 
lower stage (Barnes 1967).

Solution: To determine the composite Manning’s n 
value, the inchannel and overbank n values must first 
be determined.

The solution will first estimate n values using refer-
ence materials, then this solution will compare this 
estimate with the value calculated from Manning’s 
equation. Roughness estimates can be found in 
NEH–5, Hydraulics, supplement B by Cowan (1956). 
Arcement and Schneider (1990) extended this body 
of work. Both methods estimate a base n value for a 
straight, uniform, smooth channel in natural materials, 
then modifying values are added for channel irregular-
ity, channel cross-sectional variation, obstructions, 
and vegetation. After these adjustments are totaled, an 
adjustment for meandering is also available.

For the channel below 10 feet, the bed material is silty 
clay. Arcement and Schneider (1990) show base n 
values for sand and gravel. For firm soil, their n value 
ranges from  0.025 to 0.032. Cowan (1956) shows a 
base n of 0.020 for earth channels. Richardson, Si-
mons, and Lagasse (2001) shows 0.020 for alluvial silt 
and 0.025 for stiff clay. A reasonable assumption could 
be 0.024 for the channel below 10 feet of depth. For 
the remainder of the channel, above 10 feet of depth 
to top of bank at 20 feet, the effects of vegetation must 
be added in. The channel is then divided into three 
pieces: a lower channel, an upper channel, and a right 
overbank. Other breakdowns of this cross section are 
possible.

For the lower channel a base n value of 0.024 is as-
sumed. Referring to Cowan (1956) in NEH 5, supple-
ment B, a 0.005 can be added for minor irregularity 
and a 0.005 addition for a shifting cross section. This 
gives a total n value for the lower channel of 0.034.

Figure 6–6	 Looking upstream from left bank Figure 6–7	 Looking downstream on right overbank
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For the upper channel, the area above the lower 10 
feet of flow depth and excluding the right overbank, 
the base n value is 0.024, a minor irregularity addition 
of 0.005, a 0.005 addition for a shifting cross section, 
a minor obstruction addition of 0.010, and a medium 
vegetation addition of 0.020 can be selected. This gives 
a total n value for the upper channel of 0.064.

For the overbank, a base n (from the overbank soil) 
is needed. Based on site-specific observations, it was 
found that the soil is slightly more coarse than that of 
the main channel, n = 0.027. Again from NEH 5, sup-
plement B, Cowan (1956) a minor irregularity addition 
of 0.005, a shifting cross section addition of 0.005, an 
appreciable obstruction addition of 0.020, and a high 
vegetation addition of 0.030 can be selected. This gives 
a total n value for the overbank of 0.087.

To obtain composite roughness, use the method of 
Chow (1959), whereby a proportioning is done with 
wetted perimeter (P) and hydraulic radius (R):

	
n =













∑

PR

P R

n
N N

N

N

5
3

5
3

1

	 (eq. 6–21)

As follows:

P A R n
x–s part (ft) (ft2) (ft)

Lower channel 94 650 6.91  0.034

Upper channel 65   1875   28.8  0.064

Right overbank 89   376   4.22  0.087

Total channel 159 2,525 15.88 —

Total x–s 248 2,901 11.70 —

Using equation 6–21 the composite roughness is:

	 n =
( )( )

( )( )
+

( )( )
+

( )
248 11 70

94 6 91

0 034

65 28 8

0 064

89 4

5
3

5
3

5
3

.

.

.

.

.

.222

0 087
0 042

5
3( )

=
.

.n

This value can be compared to a value calculated with 
Manning’s equation as follows.

	 n =
1 486 2

3
1
2

.

Q
AR S

	
nchan = ( )( ) ( ) =

1 486

5770
2525 15 88 00016 0 052

2
3

1
2

.
. . .

Discussion:
The difference in Manning’s n initially appears to be 
cause for concern. However, it does illustrate three 
important points. First, this process is subjective, and 
two equally capable practitioners may arrive at differ-
ent results. Second, Manning’s equation is for uniform 
flow. Differences in measured and calculated n values 
should be attributed to the uncertainty in choosing 
appropriate values to account for various factors as-
sociated with roughness. Manning’s equation by itself 
can provide an estimate, but it cannot precisely deter-
mine roughness when the flow is not uniform. Third, 
an uncertainty analysis is recommended for hydraulic 
analysis.

As documented in Barnes (1967), the USGS backwa-
ter calculations determined the channel n value to be 
0.046 and the right overbank n value to be 0.097. In 
contrast to this example, Barnes calculated roughness 
using energy slope, rather than water surface slope 
and also included expansion and contraction losses.

Example problem: Manning’s n value for a 
sand-bed channel

 Problem: Determine the n value for a wide, sand chan-
nel with the following cross section (fig. 6–8). Assume 
a discharge of 4,100 cubic feet per second, a thalweg 
depth of 5 feet, 3:1 side slopes and a fairly straight, 
regular reach. Assume a slope of 0.0013 and a sandy 
bottom with a D

50
 of 0.3 millimeter.

Figure 6–8	 Sand channel cross section

125 ft

35 ft
2 ft2 ft
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Solution: Roughness in sand channels is highly de-
pendent on the channel bedforms, and bedforms are a 
function of stream power and the sand gradation. Ar-
cement and Schneider (1990) show suggested n values 
for various D

50
 values with the footnote that they apply 

only for upper regime flows where grain roughness is 
predominant. For a D

50
 of 0.3 millimeter, this reference 

suggests a 0.017 n value. However, it is important to 
assess the regime of the flow. A figure from Simons 
and Richardson (1966) (also in Richardson, Simons, 
and Lagasse 2001 and Arcement and Schneider 1990) 
is shown as figure 6–9. Given stream power and me-
dian fall diameter, the flow regime may be estimated, 
as well as the expected bedform and roughness range.

Stream power may be calculated from where gamma 
is unit weight of water, Q is discharge, and S

f
 is the 

Figure 6–9	 Plot of flow regimes resulting from stream power vs. median fall diameter of sediment
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energy slope. Assuming the energy slope is nearly the 
same as the bed slope, then:

	 Ω = ( )( )( )
=

62 4 4100 0 0013

333

. . lb/ft  ft /s

 lb/s

3 3

	 (per ft of channel length)

For figure 6–9, stream power per cross-sectional area 
is needed. The flow area for the given cross section is 
554 ft2, so the stream power is 0.60 pounds per second 
per square foot (per foot of channel length). Read-
ing figure 6–9, with a D

50
 of 0.3 millimeter, the flow is 

in the upper regime, but close to the transition. This 
would support an n value of 0.017, particularly if bed-
forms are present.
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Figure 6–10 (Arcement and Schneider 1990) indicates 
the general bedforms for increasing stream power.

The anticipated bedform is a plane bed, and figure 6–9 
suggests an n value between 0.010 and 0.013 for plane 
beds. The presence of breaking waves over antidunes 
would raise the roughness estimate to between 0.012 
to 0.02. Finally, an estimate may be calculated with 
the Strickler formula (Chang 1988; Chow 1959) that 
relates n value to grain roughness. So, for a plane bed 
it should give a good estimate:

n = ( )0 0389 50

1
6. D      with D

50
 in feet 	 (eq. 6–22)

or

n = ( )0 0474 50

1
6. D      with D

50
 in meters	 (eq. 6–23)

Since the D
50

 is 0.3 millimeter, the calculated n value 
is 0.012, which agrees with figure 6–9 results for plane 
beds. Arcement and Schneider (1990) show n = 0.012 
for a D

50
 of 0.2 millimeter, and this calculation is close 

to the transition range. Considering all of the above, 
information supports a roughness selection between 
0.013 to 0.017. If field observations support the plane 

bed assumption, a value from the low end of this range 
should be selected. If antidunes are present, a value 
from the high end of this range would be reasonable.

Example problem: Manning’s n value for a 
gravel-bed channel

Problem: Determine the n value for a wide, gravel-bed 
channel with a D

50
 of 110 millimeters. Assume a fairly 

straight, regular reach. Assume minimal vegetation 
and bedform influence.

Solution: Since the grain roughness is predominant, 
the Strickler formula can be used.

	 n = ( )0 0474 50

1
6. D      for D

50
 in meters

This results in an estimated n value of 0.033. It should 
be noted that this estimate does not take into account 
many of the factors which influence roughness in 
natural channels. As a result, a estimate made with 
Strickler’s equation is often only used as an initial, 
rough estimate or as a lower bound.

Figure 6–10	 General bedforms for increasing stream power
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(d)	 Friction factor

As with Manning’s n value and the Chézy C, the fric-
tion factor, f, is a roughness coefficient in a velocity 
equation, namely, the Darcy-Weisbach equation. Origi-
nally developed for pipe flow, the equation adapted for 
flow in open channels is:

	 V
gRS

f
= 





8
0 5.

with f being dimensionless.	
		  (eq. 6–24)

Alternatively, f
gRS

V
= 





8
2 	 (eq. 6–25)

In 1963, the ASCE Task Committee on Friction Factors 
in Open Channels recommended the preferential use 
of the Darcy-Weisbach friction factor over Manning’s n 
(Simons and Sentürk 1992). While Manning’s equation 
remains the most used equation in practice, a compari-
son between the two is an illustrative exercise. The 
equation, applicable for steady uniform flow, is a bal-
ance of downstream gravitational force and upstream 
boundary resistance forces. The relationship between 
Manning’s n and Chézy C is (Hey 1979, English units):

	 8
0 5

1
6

0 5 0 5f

d

g

C

g







= =
.

. .n
	 (eq. 6–26)

where:
d	 =	hydraulic depth

To apply the velocity equation, the friction factor 
must be determined. As has often been discussed by 
researchers (Raudkivi 1990; Thorne, Hey, and New-
son 2001), the vertical velocity profile can often be 
assumed to be logarithmic with distance from the 
bed. For sand and gravel channels, where the relative 
roughness (flow depth/bed-material size) exceeds 10, 
this relationship holds.

For use in gravel-bed streams, with width-to-depth 
ratios greater than about 15, Hey (1979) derived the 
following (see also Thorne, Hey, and Newson 2001):

	
1

2 03
3 5 84f

aR

D
= . log

.
     (SI units)	 (eq. 6–27)

or

	
8

5 75
3 5

0 5

84f

aR

D






=
.

. log
.

     (English units)	 (eq. 6–28)

where:
R	 =	hydraulic radius
D

84
	 =	bed-material size for which 84 percent is small-

er

The dimensionless a is given by (Thorne, Hey, and 
Newson 2001):

	 a
R

max

=






−

11 1

0 314

.

.

d
	 (eq. 6–29)

where:
d

max
	 = maximum flow depth

The coefficient a varies from 11.1 to 13.46 and is a 
function of channel cross-sectional shape. For chan-
nels in which the width-to-depth ratio exceeds 2, the 
maximum flow depth is valid in the above equation. 
Otherwise, the value in the denominator should be the 
distance perpendicular from the bed surface to the 
point of maximum velocity. This formula for determin-
ing f may be used in gravel-bed riffle-pool streams in 
the riffle section, where flow is often assumed to be 
uniform. In general, the D

84
 is calculated based on a 

sample taken at the riffle section.

The Limerinos equation can also be used to determine 
the friction factor.

	
n =

( )
+

















0 0926

1 16 2 0

1
6

84

.

. . log

R

r
D

	 (eq. 6–30)

where:
R	 =	hydraulic radius, in ft
D

84
	 =	particle diameter, in ft, that equals or exceeds 

that of 84 percent of the particles

This equation was developed from samples taken from 
11 large United States rivers with bed materials rang-
ing from small gravel to medium size boulders. This 
equation has been shown to work well on sand-bed 
streams with plane beds.

(e)	 Accounting for velocity distributions 
in water surface profiles

Actual velocities in a cross section are distributed 
from highest, generally in the center at a depth that is 
some small proportion beneath the surface, to much 
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lower values in overbanks and at flow boundaries (fig. 
6–11). A velocity meter measures velocities related to 
the vertical flow area close to the instrument.

This elementary phenomenon is responsible for the 
fact that an average cross-sectional velocity cannot 
provide a precise measure of the kinetic energy of 
the flow; the alpha and beta coefficients therefore are 
needed as modifiers.

When the flow velocity in a cross section is not uni-
formly distributed, the kinetic energy of the flow, or 
velocity head, is generally greater than V2/2g, where 
V is the average velocity. The true velocity head may 
be approximated by multiplying the velocity head by 
alpha (α), the energy coefficient. Chow (1959) stated 
that experiments generally place alpha between 1.03 
and 1.36 for fairly straight prismatic channels. The 
nonuniformity of velocity distribution also influences 
momentum calculations (as momentum is a function 
of velocity).

Beta (β) is the momentum coefficient that Chow 
indicates varies from 1.01 to 1.12 for fairly straight 
prismatic channels. Beta, also called the Boussinesq 
coefficient, is also described in Chow (1959). Both 
coefficients may be calculated by dividing the flow 
area into subareas of generally uniform velocity distri-
bution.
			 
	 α ≈ ∑ v A

V A
i
3

i

3
total

	 (eq. 6–31)

	 β ≈ ∑ v A

V A
i
2

i

2
total

	 (eq. 6–32)

However, for natural channels, the calculation is better 
made using conveyance. HEC–RAS uses the following 
formulas:

	 α ≈





∑ K

A

K

A

i
3

i
2

total
3

total
2

	 (eq. 6–33)

	 β ≈





∑ K

A

K

A

i
2

i

total
2

total

	 (eq. 6–34)

Every cross section is only a two-dimensional slice 
of a three-dimensional reality. Cross sections change 
along the stream profile, inevitably setting up trans-
verse velocity vectors, and the flow is induced into 
a roughly spiral motion. This flow behavior leads to 
point bars, pools and riffles, meandering patterns, and 
flood plains. Further information on the velocity and 
shear in the design of streambank protection in bends 
is given in NEH654.14, Stabilization Techniques.

(f)	 Determining the water surface in 
curved channels

Water surface profiles as computed by HEC–RAS 
assume a level water surface in each cross section. 
This is not the case in a curved channel. However, the 
water surface calculated by HEC–RAS is valid along 
the centerline of the flow. Generally, HEC–RAS can 
account for the friction and eddy losses caused by a 
bend so that the water surface computed upstream 
would be correct. However, the super-elevated water 
surface in the bend itself must be calculated separate-
ly. The following formula is often used for estimating 
super-elevation in a water surface.

	
∆Z

bV

grc

=
2 		

		  (eq. 6–35)

where:
V	 =	average channel velocity (ft/s)
b	 =	channel top width (ft)
g	 =	gravitational acceleration (32.2 ft/s2)
r

c
	 =	radius of curvature of the channel (ft)

∆Z	 =	super-elevation in ft from bank to bank, so the 
amount added to or subtracted from the cen-
terline elevation would be half that. A factor of 
safety of 1.15 is generally applied.

Figure 6–11	 Flow velocities for a typical cross section
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In supercritical flow, curved channels are much more 
complicated due to wave patterns that propagate back 
and forth across the channel and downstream. With 
the disturbances reflecting from one side to the other, 
higher water surfaces can occur both on the inside and 
outside banks of a bend. Although a methodology for 
determining the super-elevation is developed by Chow 
(1959) for a regular curved channel with a constant 
width, it also approximates that for a natural channel.

Example problem: Super-elevation

Problem: A trapezoidal channel has a 30-foot bottom 
width, 1H:3V side slopes, and a radius of 100 feet. For 
a 500 cubic feet per second discharge, the depth is 4.12 
feet, and the cross-sectional area is 174.5 square feet. 
Find the increase in water surface on the outside of 
the curve.

Solution: Calculate the velocity, from Q = VA:

	 V= 
Q

A
=

500

174.5
 ft/s= 2 87.

top width is:

	
30 2 3 4 12+ × ×( ). =54.7 ft

	
∆Z

bV

grc

= =
( )( )
( )( ) =

2 2
54 7 2 87

32 19 100
0 14

. .

.
.  feet

so, the increase in the flow depth on the outside of the 
curve is 0.07 feet, which is half of 0.14 feet.

(g)	 Transverse flow hydraulics and its 
geomorphologic effects

Frequently, the intent of channel design is to try to re-
create or restore a natural condition, one that is geo-
morphologically sustainable. The hydraulic engineer 
needs to be aware of the mechanics of the flow and 
movable boundaries in channel curves. In a straight 
channel section, the task of determining boundary 
stress is easier than in curved reaches, as the direction 
of flow is more likely to be parallel to the banks. Shear 
force is dominant, and no significant additional force 
exists due to the momentum of flow impinging on the 
bank at some angle. In a curve, accounting for those 
angles of impinging flow is very important. The prob-
lem is three-dimensional, as previously mentioned, 

accounting for velocity distributions in water surface 
profiles, and flow in a curve sets up transverse velocity 
vectors and spiral motion. This phenomenon is com-
pletely natural and one of the driving mechanisms of 
geomorphology.

If a curving section of streambank is to be stabilized, 
some understanding of the nature of transverse (or 
secondary) flow is necessary. The task of streambank 
protection may be roughly divided into two major 
strategies: installation of measures that enable the 
bank to resist hydraulic forces at whatever angle they 
impinge or redirecting the flow so that the bank is 
no longer subject to damaging forces. Examples of 
the first would be planting vegetation on the banks 
or installing woody debris. The second strategy em-
ploys such measures as stream barbs, spur dikes, or 
longitudinal groins. Both of these strategies are cov-
ered extensively in NEH654.14 and related technical 
supplements in this handbook. However, particularly 
for curved channels, an examination of the hydraulic 
aspects upon which any streambank protection mea-
sure will succeed or fail is given here.

Even in straight channels, some flow spiraling can oc-
cur, and a moveable bed sets up transverse slopes that 
alternate direction along the bed profile. Figure 6–12 
(Chang 1988) illustrates the behavior of spiral flow and 
the resulting transverse bed slopes.

In curved sections, the secondary current is not neces-
sarily only one cell of circulation as shown in figure 
6–13 (Chang 1988).

Chang (1988) provides the following equation for a 
hydraulically rough channel:

	 tan δ = 11
d

r
	 (eq. 6–36)

where:
δ	 =	angle of the bottom current with channel cen-

terline
d	 =	depth at the location of interest in the section
r	 =	radius of curvature to the location of d

The channel roughness is not considered to have a sig-
nificant influence on the angle δ. Chang (1988) docu-
ments research that can enable the hydraulic engineer 
to calculate shear stress in the radial (or transverse) 
direction, the transverse bed slope a channel might be 
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Figure 6–12	 Spiral flow characteristics for a typical reach
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expected to acquire, and the sediment sorting expect-
ed along that transverse slope.

Chang (1988) provides the following two equations 
to calculate shear stress in the radial direction (both 
toward the inside of the curve, due to bottom current, 
and toward the outside due to surface current):

	 τ ρ
κ κ0r

2U

r

g g
= −









 −

























d
C C

2 2

2 3

	 (eq. 6–37)

	 τ ρ0r
2d

r
U=

+
+

1

22

m

m m
	 (eq. 6–38)

	
m

f
= κ

8 	 (eq. 6–39)

where:
ρ	 =	density of water
g	 =	acceleration due to gravity
κ	 =	the dimensionless von Kármán constant 

(κ ≈ 0.40)
U	 =	avg. cross-sectional velocity
C	 =	Chézy resistance factor, defined below
d	 =	depth at the location of interest
r	 =	radius of curvature to that location
f	 =	friction factor as defined below

The Chézy resistance factor is similar to Manning’s 
n value in that it is an empirically derived coefficient 
serving as an index of boundary roughness. The fol-
lowing Ganguillet and Kutter formula (1869), as pro-
vided in Chow (1988), is a method of calculating Chézy 
C, given Kutter’s n:

	 C n
n

=
+ +

+ +





41 65
0 00281 1 811

1 41 65
0 00281

.
. .

.
.

S

S R

	 (eq. 6–40)

where:
S	 =	profile bed slope
R	 =	hydraulic radius
n	 =	Kutter’s roughness

Chézy’s C is related to Manning’s n by the following 
equation in English units:

	
C

R

=







1 486
1
6.   

n
	 (eq. 6–41)

	 R = hydraulic radius (ft)

The Darcy-Weisbach friction factor, f, is described by 
Chow (1959) and for uniform or near uniform flow 
may be calculated using:

	 f =
8gRS

V2
	 (eq. 6–42)

Both Chow (1959) and Chang (1988) describe the 
relationship of f to boundary Reynolds number. Chang 
provides three formulas, dependent on hydraulic 
smoothness, for channels in which form roughness is 
not a factor as follows.

	
f

R k

R
bed s= +( ) <

−
0 103 2

4
0 5

5
. log log .

.
R forbed

		  (eq. 6–43)
(hydraulically smooth)

where:
R	 =	hydraulic radius
R

bed
= boundary Reynolds number

k
s
	 =	equivalent roughness or grain roughness, 

calculated from the following, one of several 
similar equations, Chang (1988):

	 k Ds = 3 90 	 (eq. 6–44)

For the transition from hydraulically smooth to rough:

			 
	

f A
R k

R

R

ki
bed s

i

i s

=




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+










≤

=

−

∑ log log

.

4
2

2

0

6
5

for

0.5 log
Rbedd s

4R

k
≤ 2 0.

	 (eq. 6–45)

where the coefficients A
0
 through A

6
 are 1.3376, 

-4.3218, 19.454, -26.48, 16.509, -4.9407, and 0.57864, 
respectively.

For the hydraulically rough regime:

	
f

k

k
= +







>
−

1 74 2
2

2 0

5

. log .

.
R

for log
R

4Rs

bed s

		  (eq. 6–46)
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For gravel-bed rivers, Chang (1988) provides the fol-
lowing equation:

	 f
D

= +






−

0 248 2 36

5

. . log

.
d

50

	 (eq. 6–47)

where:
d	 =	max depth of flow with units same as D

50

In figure 6–13, δ is the angle between the velocity vec-
tor of the bottom current and the centerline. Also of 
interest is the resultant angle of shear stress between 
the two components of shear, and longitudinal and 
radial. Chang (1988) gives that angle, δ , as:

	 tan ′ = −








δ

κ κ
2

1
d

C2r

g
	 (eq. 6–48)

where all variables have been previously defined.

Longitudinal shear stress at any point in the cross sec-
tion is calculated with the following equation:

	 τ γ0s c
cS

r

r
= d 	 (eq. 6–49)

	where the c subscript refers to the channel centerline.

The transverse bed slope (β) can be computed using:

	 β δ ϕ= ( )arctan tan  tan 	 (eq. 6–50)

where:
δ	 =	the angle shown in the above sketch
ϕ	 =	the sediment angle of repose

This equation is valid when β is small compared to ϕ. 
This relationship is less accurate for channels with 
significant quantities of suspended sediment. Since ϕ 
is generally >30º, then β should be less than 10º. If ϕ 
>30º, then β becomes less valid as δ increases toward 
20º or in tight curves.

Finally, Chang (1988) provides a formula for determin-
ing sediment sorting on the transverse slope:

	 D
d

=
−( )

3

2

ρ
ρ ρ ϕ

S r

r tan
c c

s

	 (eq. 6–51)

where:
D	 =	median grain size
d	 =	depth at that location
S

c	
=	longitudinal profile slope along the centerline

r
c
	 =	radius of curvature to centerline

r	 =	radius of curvature to location of d
ρ	 =	densities of sediment and water

Example problem: Design radius

Problem: A roughly trapezoidal curved channel is 
being designed with a moveable boundary in dynamic 
equilibrium to carry a flow of 700 cubic feet per sec-
ond. The channel profile slope is 0.0013, channel bot-
tom width is 30 feet, with a transverse bed slope, β, of 
10 percent, and 3H:1V side slopes. The bed material is 
rounded gravel, with a D

50
 of 0.30 inches, and n value 

of 0.035. Considering uniform flow and a maximum 
depth of 6 feet, calculate the design radius of curva-
ture to the centerline, longitudinal and radial stress 
vectors at the centerline, and the resultant stress angle 
in the curve.

Solution:
Part 1—Design radius of curvature to the centerline

The angle of repose ϕ for 0.3-inch, rounded gravel is 
about 31 degrees. Assuming a constant transverse 
bed angle of 10 percent, tan β = 0.10, and the resulting 
angle of the bottom current would be:

	 tan  tan  β δ ϕ= tan 	 (eq. 6–52)

or

	 δ
β
ϕ

=






arctan
tan

tan
	 (eq. 6–53)

so, δ = 9.4 degrees

Consider the channel centerline to be horizontally 
located at the centroid of the flow cross section, as 
shown in figure 6–14.

Figure 6–14	 Channel centerline at centroid of flow  
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To find X, the flow area left of the centroid must be 
equated to that on the right:

18 6

2
3

30 3

2

30 3 0 1

2

3 30
9 3

2

30 3 0 1

×
+ +

×
−

−( ) −( )

= −( ) +
×

+
−( ) −( )

X
X X

X
X X

.

.

22

	

Simplifying:

	
54 3 45 90 3 13 5 30 3 0 1+ + = − + + −( ) −( )X X XX . .

12 94 5X 0.1X2− = .

by trial and error, X = 8.5 feet.

The depth at the centerline is

	
6 8 5 0 10 5 15− ( )( ) =. . .  ft

given:

	tan δ = 11
d

r
, solving for radius of curvature, r = 342 ft

Part 2—Longitudinal and radial stress vectors

The longitudinal shear stress at the centerline is calcu-
lated with equation 6–49.

	τ γ0s c
c 2S

r

r
 lb/ft= = × × =d 62 4 5 15 0 0013 0 418. . . .

The total flow area is 202.5 square feet, wetted pe-
rimeter = 58.6 feet, so R = 3.46 feet. From Q = VA, the 
average velocity is 700/202.5 = 3.46 feet per second. 
The friction factor is:

	f = =
× × ×

( )
=

8 8
0 097

gRS

V

32.19 3.46 0.0013

3.46
2 2

.

The radial shear is calculated with equations 6–38 and 
6–39.

	 τ ρ0r
2d

r
U=

+
+

1

22

m

m m

	
m
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= = =κ

8 8
0 4

0 097
3 36.

.
.
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(3.46 = × × × ×0 242

5 15
3

.
.slugs

ft slug
fft/s

 lb/ft

2

2

)

.= 0 085

Part 3—Resultant stress angle in the curve

The direction of the resultant stress vector between 
the longitudinal and radial components is calculated 
using equations 6–48 and 6–40.

	 tan ′ = −

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
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1
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0.42

Hey (1979) addresses point bar development with a 
sketch similar to figure 6–15, showing how secondary 
currents, along with bed-load supply, impact the loca-
tion of aggradation and degradation in a meander.

During bankfull flows, the strongest velocity vectors 
follow the course of the arrows starting at A in figure 
6–15, cutting across the toe of point bars with the high-
est bed-load supply. At B, downstream of the bar apex, 
the shear stress and transport capacity drop, and ag-
gradation occurs. Opposite the point bar at C, low bed 
load accompanies the incoming flow, and as surface 

Figure 6–15	 Point bar development
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currents angle into the bank and undercurrents move 
away from the bank, a zone of downwelling results at 
point D. The low bed load gives the stream a scouring 
tendency. Toward the inflection point of the meander, 
flow with a low bed-load supply enters a contracted 
reach at E that is steeper and shallower, and regains 
its scouring capacity. Riffles form and, as the highest 
velocity vectors cut from one point bar toe to the toe 
of the next downstream bar, riffles are often skewed to 
the banks.

(h)	 Change in channel capacity

Natural channels will often incise in response to hu-
man impacts, such as watershed development, channel 
straightening, removal of vegetation, or overgrazing. 
The incision is a lowering of the channel bed, that in 
effect increases the channel size and capacity. Often, 
the overbank dries out due to a falling water table. 
This lowered water table can cause wetlands to shrink 

Figure 6–16	 Seasonal hydrograph
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and adjacent productive lands to depend on irriga-
tion. For projects in which overbank soil moisture is a 
concern, the duration of flow is often more important 
than the peak discharge. Inchannel flow can have a 
significant effect on overbank soil moisture if it is near 
bankfull for a sufficient duration.

Example problem: Change in overbank 
duration

Problem: A channel has, in the span of 10 years, in-
cised by several feet and increased the bankfull flow 
area from 84 square feet to 107 square feet. The chan-
nel slope has increased from 0.0020 to 0.0025. The wet-
ted perimeter increased from 29.4 feet to 42 feet. The 
vegetation has suffered to the extent that composite n 
value has decreased from 0.045 to 0.038. Approximate 
the change in duration of overbank flooding, given the 
season-long hydrograph in figure 6–16.
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Solution: Using a uniform flow assumption and Man-
ning’s equation, the original channel capacity was:

	
Q AR S=

= ( )



 ( )

=

1 486

1 486
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With the changed hydraulic parameters:

	
Q
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 ft /s

2
3

3

= ( )



 ( )

=

0 038
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1
2

.

Looking at the hydrograph, then, the new channel 
condition fully contains the hydrograph, since the 
peak is less than 390 cubic feet per second: no days of 
overbank flooding occur. The previous channel capac-
ity was 250 cubic feet per second, and overbank flow 
would have occurred four separate times for a total of 
about 16 days.

654.0610	 Water surface profile 
calculations

The calculation of water surface profiles and associat-
ed hydraulic parameters is a common task of hydrau-
lic engineers. In natural, gradually varied channels, 
velocity and depth change from cross section to cross 
section. However, the energy and mass are conserved. 
The energy and continuity equations can be used to 
step from a water surface elevation at one cross sec-
tion to a water surface at another cross section that is 
a given distance upstream (subcritical) or downstream 
(supercritical). Programs, such as HEC–RAS, use the 
one dimensional energy equation, with energy losses 
due to friction evaluated with Manning’s equation, 
to compute water surface profiles. Equation 6–9 be-
comes:

	 V

2g

V

2g

2

2

2

1







+ + =






+ + +Y Z Y Z he2 2 1 1
	 (eq. 6–54)

This one dimensional energy equation can be restated 
as:

	 WS WS
g

V V he2 1 1 1
2

2 2
21

2
= + −( ) +α α 	 (eq. 6–55)

The water surface profile determination is accom-
plished with an iterative computational procedure 
called the standard step method. This is graphically 
illustrated in figure 6–17.

Figure 6–17	 Standard step method
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The energy loss includes friction losses (usually evalu-
ated with Manning’s equation) and losses associated 
with changes in cross-sectional areas and velocities. 
This is represented in equation 6–56:

	 h LS C
V

g

V

ge f= + −
α α2

2
1
2

2 2
	 (eq. 6–56)

Friction loss is evaluated as the product of the friction 
slope and the discharge weighted reach length. This is 
shown in equation 6–57:

	 L
L Q L Q L Q

Q Q Q
lob lob ch ch rob rob

lob ch rob

=
+ +

+ +
	 (eq. 6–57)

Example problem: Backwater from a log 
drop

Problem: Determine the maximum crest level of a log 
weir set all the way across the channel that would 
cause no backwater, and the crest level required to 
cause 1 foot of backwater just upstream of the weir 
(fig. 6–18). Assume a discharge of 491.5 cubic feet per 
second, depth of 4 feet, and uniform flow conditions 
without the weir.

Solution: To create no backwater, the log weir would 
have to pass the same discharge at the same water 
surface. The evaluation should be between the log 

crest (section 2) and a point (section 1) not very far 
upstream (fig. 6–19).

This can be evaluated using the energy approach with 
Bernoulli’s equation. An assumption can be made that 
there is very little friction loss between the two points. 
The difference in the channel bottom elevation is also 
negligible over this short distance. So,

	 z y
V

z y
V

hL1 1
1
2

2 2
2
2

2 2
+ + = + + +α α1 2g g

	

where:
h

L
	 =	 head loss (assumed negligible) becomes:

	 y
V

g
y

V

g
D1

1
2

2
2
2

2 2
+ = + +

	 where:
	 D	 =	height of the log weir

If the flow is high enough, the log weir will be drowned 
out by the normal depth tail water and would not 
cause backwater. At lower discharges, the flow over 
the log will pass through critical depth (as shown in 
fig. 6–19).

At critical depth, the velocity head is equal to half the 
hydraulic depth:

	 Vcr
2

2g

d

2

A

2T
= =

Figure 6–19	 Profile for crest of log weir problem
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Substituting back into Bernoulli’s equation, since V
2
 is 

V
cr

,

	 y
V

y1
1
2

2
+ = + +

g

A

2T
Dcr

To determine whether the log causes backwater, com-
pare the y

1
 calculated to the flow depth without the log 

(4 ft). That is:

	 y
V

cr

A

2T
D

g
+ + − 1

2

2
        less than 4

where:
V

1
	 =	velocity upstream of the weir

Using the critical depth formula (where d is hydraulic 
depth and T is top width) along with the continuity 
equation, Q = VA, the following can be derived:

	 Vcr
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Q T

gcr

2

3=

To find the maximum log crest before backwater is 
created, a log crest must be chosen and checked with 
a trial and error approach. For this example, suppose 
D = 1. Choose a depth and calculate the flow area by 
the dimensions of the cross section. Then compare 
with the A

cr
. When the two flow areas are the same, 

this is the critical depth for that Q (given as 491.5 
ft3/s).

Trial # ycr T A Acr

1 1.0 36.0 33.0 64.65

2 2.0 42.0 72.0 68.06

3 1.9 41.4 67.8 67.70     

However, the velocity head must still be calculated to 
assure that there is no backwater. Note that the veloc-
ity head is negligible as long as the velocity is not too 
large. For example, a velocity of 5 feet per second 
results in a velocity head of 0.39 feet.

	 y
V

cr
1A

2T
D

g
+ + −

2

2
     less than 4

If this velocity head term is neglected, then given
y

cr
 = 1.9, T = 41.4, A = 67.8, the above formula solves 

as:

	 1 9 3 72. .+
×

+ =
67.8

2 41.4
1  ft

Since this solution is less than the clear channel depth 
of 4, it may be possible to raise the weir.

(a)	 Steady versus unsteady flow

Many hydraulic parameters of interest in typical de-
signs and assessment can be calculated by assuming 
a normal depth. Normal depth calculations are often 
based on a solution to Manning’s equation. This ap-
proach is relatively simple, but only applicable in 
uniform flow conditions where the gravitational forces 
are exactly offset by the resistance forces. Manning’s 
equation is an infinite slope model that assumes mean 
depth, velocity, and area are the same from cross 
section to cross section. It can only occur in long, 
straight, prismatic channels where the terminal veloc-
ity of the flow is achieved. This assumption cannot 
account for backwater conditions nor variable chan-
nel shape, roughness, and slope. Natural channels 
approach, but rarely achieve uniform, normal depth. 
Designs and assessments that depend on calculations 
based on normal depth must consider the affects of 
possible errors.

Even though flows in a stream are readily observable 
at any time, they are unsteady at every spatial and 
temporal scale. Typically, unsteady modeling results in 
variations in flow rate, velocity, and depth in space and 
time throughout the modeled reach. In most unsteady 
flow models, the discharges can vary within a model, 
and the boundary conditions are in terms of flow and 
stage with time. Unsteady flow calculations are often 
used to analyze a dam breach, inchannel storage, vari-
able boundary conditions, rapidly rising hydrographs 
on flat slopes, irrigation withdrawals, tributary flow 
interaction, and locations where duration of flooding 
is an issue.

Unsteady flow models can be contrasted to steady 
flow models with no time component in the calcula-
tions. Steady flow models are typically much simpler 
to calibrate and execute than unsteady flow models. 
For most steady flow models, the depth and velocity 
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may change from section to section, but only one flow 
is allowed per section per model run. Since the flow 
is constant with respect to time, only one discharge 
is calculated for each section in a given steady flow 
model run. In addition, boundary conditions are held 
constant. These assumptions are often suitable for 
many analyses where the reach is short or the primary 
interest is an assessment of the peak hydraulic param-
eters for a given discharge.

In alluvial channels, the interaction of sediment with 
the flow can also have a profound affect since the 
amount and type of sediment load affects the energy 
balance of the flow. Equations of sediment motion 
(sediment continuity and sediment transport) are cov-
ered in NEH654.13.

(b)	 Backwater computational models

Computer programs are used to calculate water sur-
face profiles, lateral velocity distributions, flow re-
gimes, and scour potential. For projects that are likely 
to involve revisions to Federal Emergency Manage-
ment Agency’s (FEMA) Flood Insurance Rate Maps, 
selection of the hydraulic model should be coordinat-
ed carefully with FEMA. Following are some standard 
hydraulic models.

HEC–RAS
HEC–RAS (USACE 2001b) is the recommended com-
puter program for performing hydraulic calculations 
for steady and unsteady, gradually varied (over dis-
tance), one-dimensional, open channel flow. HEC–RAS 
includes a culvert module that is consistent with HDS–
5 and HY–8. The bridge hydraulics algorithms now 
include the WSPRO models. HEC–RAS applies conser-
vation of momentum, as well as energy and mass, in its 
hydraulic analysis. HEC–RAS includes all the features 
inherent to HEC–2 and WSPRO, plus several friction 
slope methods, mixed flow regime support, automatic 
n value calibration, ice cover, quasi 2–D velocity distri-
bution, and super-elevation around bends.

HEC–2
HEC–2 (USACE 1990b) performs hydraulic calcula-
tions for steady, gradually varied (over distance), 
one-dimensional, open channel flow. One of HEC–2’s 
technical limitations is that the normal bridge routines 
and standard-step backwater computations use energy 
conservation only. Conservation of momentum is used 

only in the special bridge routines when bridge piers 
are involved.

WSPRO
The WSPRO computer program was developed by the 
USGS and is comparable to HEC–2, except for the fact 
that WSPRO had special subroutines for analysis of 
water surface profiles at bridge locations. All of these 
WSPRO subroutines have been incorporated into 
HEC–RAS. The current version of WSPRO is no longer 
being supported by USGS.

HY–22
HY–22 is a small tool kit of relatively simple computer 
programs for performing the hydraulic analyses de-
scribed in the Urban Drainage Design Manual, Hy-
draulic Engineering Circular No. 22, U.S. Department 
of Transportation Federal Highway Administration 
(FHWA) (1996). HY–22 includes pavement drainage, 
open channel hydraulics, critical depth computation, 
computation of storage volume, and simple reservoir 
routing.
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654.0611	 Weir flow

Flow over a broad-crested weir is an application that 
can be analyzed with momentum principles. The mo-
mentum principle has certain advantages in applica-
tion to problems involving high internal energy chang-
es (Chow 1959). The pressure force due to the weight 
of water and the obstruction of the weir is important. 
The gravitational force vector in the direction of flow 
may be neglected for a mild channel slope and small 
distance between the uncontracted upstream section 
and the cross section at the weir. The friction forces 
on the wetted boundary in the short distance between 
the two sections may be neglected, as well.

Weir flow is calculated using:

	 Q CLH=
3
2 	 (eq. 6–58)

where:
L	 =	weir length (ft)
C	 =	weir discharge coefficient (usually from 3.05 to 

2.67)
H	 =	approach head (ft)

The actual value of C depends on factors such as the 
roundedness of the upstream corner of the weir and 
the width and slope of the weir crest. Brater and King 
(1976) give C = 3.087 as a maximum value for broad-
crested weirs with a vertical upstream face under 
any conditions, given that the upstream corner is so 
rounded as to prevent flow contraction and the slope 
of the crest is at least as great as the head loss on the 
weir due to friction. Under these conditions, flow over 
the weir occurs at critical depth. Inclining one or both 
faces of the broad-crested weir can also increase the C 
value, and Brater and King document experiments that 
obtain values of C as high as 3.8.

The flow velocity vectors for this equation are consid-
ered to be perpendicular to the crest; that is, the flow 
momentum is straight into the weir. If the weir is a 
lateral one or the main channel flow is parallel to the 
crest and the weir draws flow off to the side, the weir 
capacity would be less.

The major use of sharp-crested weirs is for flow mea-
surement. Many different crest cross-sectional shapes 
exist, such as a V-notch, but the weir width is always 

thin and is perpendicular to the flow. The same dis-
charge equation used for broad-crested weirs may be 
applied to horizontal, sharp-crested weirs, but the dis-
charge coefficient, C, is highly dependent on the nappe 
conditions. The nappe is the sheet of water flowing 
or jetting over the weir. A fully aerated nappe has an 
air pocket at atmospheric pressure just downstream 
of the weir and below the sheet of flowing water. A 
weir with a fully aerated nappe has a higher discharge 
coefficient than one in which the nappe is partially (air 
pressure less than atmospheric) or fully submerged 
(no air pocket).
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654.0612	 Hydraulic jumps

Determining the strength and location of hydraulic 
jumps is important for designing energy dissipation 
structures and assessing the effectiveness of stream 
barbs or step-pool structures. The following equation 
is used to estimate energy dissipation at a hydraulic 
jump:

	 ∆E E E
y y

y y
= − =

−( )
1 2

2 1

2

1 24
	 (eq. 6–59)

Energy is expressed in units of length (a head loss). 
The height of a jump for a channel of small slope can 
be estimated from:

	
y

y
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where:
y

1
	 =	upstream depth

y
2
	 =	downstream flow depth

F
1
	 =	Froude number of the upstream flow. This 

equation is derived from the specific force 
formulation for a rectangular channel.

	 where:

	
2 2

1
1

2
2

Q

gA
A y

Q

gA
A y

2

1

2

2+ = + 	 (eq. 6–61)

And the Froude number is:

	 F
V

gy
1

1=
1

Substituting VA for Q and bd for A, where b is the 
channel bottom width, as well as making use of the 
definition of Froude number, this equation can be 
simplified to:
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	 (eq. 6–62)

Knowing the depth of the approaching flow and its 
Froude number, the flow depth downstream of the 
jump can be calculated. Froude numbers can also be 
used to specify different types of jumps as shown in 
table 6–1 (Chow 1959).

The length of a well-defined hydraulic jump is the dis-
tance from the upstream face of the jump to the point 
on the surface just downstream of the roller. Chow 
indicates that it cannot be easily determined theoreti-
cally and is best estimated empirically. The U.S. De-
partment of Interior Bureau of Reclamation performed 
numerous experiments and provides figure 6–20 for 
determining jump length based on upstream Froude 
number and upstream flow depth (Peterka 1984). L 
is jump length, y

1
 is upstream depth, and the Froude 

number is that of the flow coming into the jump.

The location along the channel profile of the upstream 
beginning of the hydraulic jump can be generally de-
termined from

	
y

y
F1

22

1

1

2
1 8 1= + −( ) 	 (eq. 6–63)

However, the jump length has a bearing on this esti-
mate. For example, the location of a hydraulic jump 
formed by a broad-crested weir in the channel can be 
used to illustrate this situation (fig. 6–21). Downstream 
tailwater affects the location of the jump, moving it 
farther upstream and closer to the weir, as the tailwa-
ter is raised. A lower tailwater elevation produces a 
jump farther downstream. Increasing the height of the 
weir moves the jump upstream, whereas decreasing it 
moves the jump downstream.

Table 6–1	 Froude numbers for types of hydraulic jumps

Froude Jump type

<1 No jump, subcritical flow

1.0 No jump, critical flow

1.0–1.7 Undular jump: unsteady water surface

1.7–2.5 Weak jump: small rollers develop on surface

2.5–4.5 Oscillating jump: vertical flow jet produces sur-
face waves that may travel long distances

4.5–9.0 Steady jump: best energy dissipation performance

>9 Strong jump: very high energy dissipation, but 
with surface waves sent downstream
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Figure 6–20	 Determination of jump length based on upstream Froude number
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Figure 6–21	 Parameters involved with modeling a hy-
draulic jump
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However, the weir will not cause an hydraulic jump if 
it is drowned out by downstream tailwater. The down-
stream depth must be less than critical depth over the 
weir plus the weir height, or, using the definition of 
critical depth:

	 y
y h

3
12

3
<

+( ) 	 (eq. 6–64)

where:
y

1
	 =	depth upstream of the weir

h	 =	weir height
y

3
	 =	tailwater depth downstream

654.0613	 Channel routing

Channel routing is an important component of hydro-
logic modeling and assessments. Designers need to be 
able to estimate not only flow volumes, but also hy-
draulic parameters for many projects. Efforts to math-
ematically model and predict channel routing started 
with Jean Claude Saint-Venant in 1871. However, it 
is only with the advent of high speed computers that 
many of the techniques are readily available to most 
designers. The practitioner should keep in mind that 
even the most advanced computer models simplify 
natural system processes. It is, therefore, important 
for the modeler to understand the computational pro-
cedures used in the model being applied.

(a)	 Movement of a floodwave

Channel routing is the calculation of the hydraulic 
parameters of a floodwave as it moves through a chan-
nel. The overall movement is typically described with 
the concepts of celerity and attenuation. Floodwave 
celerity is the speed at which the floodwave moves 
down the channel and is primarily a function of the 
channel slope. The attenuation of a floodwave is the 
subsidence or flattening of the wave as it moves down 
the channel. Floodwave attenuation is directly related 
to the amount of inchannel or riparian storage avail-
able.

(b)	 Hydraulic and hydrologic routing

The movement of a floodwave is governed by the laws 
of fluid mechanics. The two equations for clear water 
flow are the conservation of mass, or the continuity 
equation, and the momentum equation. These two 
equations are referred to as the Saint-Venant equa-
tions. Traditional hydraulic routing involves a numeri-
cal solution to these equations as partial differential 
equations. Therefore, hydraulic routing is viewed as 
being more physically based than hydrologic routing.

Traditional hydrologic routing typically uses an alge-
braic solution to the continuity equation and a rela-
tionship between changes in storage in the reach and 
discharge at the outlet. Hydrologic routing is often 
based on analogies of stream channels and basins as a 

Introduction to Stream Hydraulics – C03-059 

6-32 



set of storage reservoirs with appropriate properties. 
In fact, hydrologic routing equations are often referred 
to as storage routing equations. As a result, hydrologic 
modeling is inherently empirically based. Typical 
hydrologic routing equations include the Muskingum 
routing and the Reservoir (Puls) routing procedures.

(c)	 Saint-Venant equations

Most channel routing performed by computer model-
ing is based on some simplification of the Saint-Venant 
equations. These equations provide a very simple mod-
el of very complex processes. These equations are:

	 Continuity
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	 (eq. 6–65)

	 Momentum
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1 	 (eq. 6–66)

where:
A	 =	cross-sectional flow area
V	 =	average velocity of water
x	 =	distance along channel
B	 =	water surface width
y	 =	depth of water
t	 =	time
q	 =	lateral inflow per unit length of channel
S

f
	 =	friction slope

S
o
	 =	channel bed slope

g	 =	gravitational acceleration

The solutions to the momentum and continuity equa-
tions concurrently define the propagation of a flood-
wave with respect to distance along the channel and 
time. Assumptions for these equations include:

•	 The momentum and continuity equations are 
shown for one-dimensional flow in the down-
stream direction. The natural variation in veloc-
ity with respect to depth is ignored. In addition, 
these equations do not directly address lateral 
or vertical stream flows that would require a 
more complex equation.

•	 Flow is gradually varied so that hydrostatic 
pressure prevails, and vertical accelerations 
can be ignored.

•	 The effects of boundary friction and turbulence 
can be treated with resistance laws, as they are 
in steady flow.

•	 Fluid is incompressible and has a constant 
density.

(d)	 Simplifications to the momentum 
equation

Depending on the relative importance of the various 
terms of the Momentum equation, it can be simplified 
for different applications as follow:

Steady uniform flow (kine-
matic wave approximation)

S =Sf o

Steady nonuniform flow 
(diffusive wave approxima-
tion)

S =S
y

xf o −
∂
∂

Steady nonuniform flow
(Quasi-steady state dynam-
ic wave approximation)

S =S
y

x

V
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∂
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−
∂
∂

V

g

Steady nonuniforn flow 
(full dynamic wave ap-
proximation)

S =S
y

x

V

x

y
f o −

∂
∂

−
∂
∂

−
∂
∂

V

g g t

1

Since simplification means that some aspect is being 
ignored, it is important for a modeler to understand 
the basis of the model being applied to answer a 
hydraulic or hydrologic question. Further discussion 
on application and limitations of some of routing ap-
proaches that are used in many computer programs 
follows.

•	 Kinematic wave approximation—The ki-
nematic wave approximation assumes that 
the gravitational and frictional forces are in 
balance. The kinematic wave approximation 
works best when applied to steep (0.0019, 10 
ft/mi or greater), well-defined channels, where 
the floodwave is gradually varied. Changes in 
depth and velocity with respect to time and 
distance are small in magnitude when com-
pared to the bed slope of the channel. The 
approach is often applied in urban areas be-
cause the routing reaches are generally short 
and well defined (circular pipes, concrete lined 
channels). However, the equations do not allow 
for hydrograph diffusion, but only simple trans-
lation of the hydrograph in time.
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	 The application of the kinematic wave equation 
is limited to flow conditions that do not demon-
strate appreciable hydrograph attenuation. This 
may be an issue in wide channels, since attenu-
ation increases with valley storage. The kine-
matic wave equations cannot handle backwater 
effects, since with a kinematic model flow 
disturbances can only propagate in the down-
stream direction.

•	 Modified Puls reservoir routing—This ap-
proach accounts for the difference of inflow 
as storage over some defined time period. This 
method is appropriate if lateral storage is the 
primary physical mechanism that affects the 
flood routing. This method disregards the equa-
tion of motion by focusing on continuity. It is 
closely related to level pool reservoir routing.

•	 Muskingum river routing—The Muskingum 
river routing method is based on two equations. 
The first is the continuity equation, and the 
second is a relationship of storage, inflow, and 
outflow of the reach. This method is based on a 
weighted function of the difference of inflow as 
storage over some defined time period. Typi-
cally, the coefficients of the Muskingum meth-
od are not directly related to physical channel 
properties and can only be determined from 
stream gage data.

•	 Diffusive wave approximation—The diffusion 
wave model is a significant improvement over 
the kinematic wave model because of the inclu-
sion of the pressure differential term in the 
momentum equation. This term allows the dif-
fusion model to describe the attenuation (dif-
fusion effect) of the floodwave. It also allows 
the specification of a boundary condition at the 
downstream extremity of the routing reach to 
account for backwater effects. It also allows 
the specification of a boundary condition at the 
downstream extremity of the routing reach to 
account for backwater effects. Since it does not 
use the inertial terms (last two terms) from the 
full momentum equation, it is limited to slowly 
to moderately rising floodwaves in flat channels 
(Fread 1982). However, most natural flood-
waves can be described with the diffusion form 
of the equations.

•	 Muskingum-Cunge—The theoretical develop-
ment of the Muskingum-Cunge routing equation 
is based on the simplification of the convective 
diffusion equation. In the Muskingum-Cunge 
formulation, the amount of diffusion is con-
trolled by forcing the numerical diffusion to 
match the physical diffusion represented by the 
convective diffusion equation. This approach 
accounts for hydrograph diffusion based on 
physical channel properties and the inflowing 
hydrograph. The method includes the conti-
nuity equation and a relationship of storage, 
inflow, and outflow of the reach. The solution is 
independent of the user-specified computation 
interval. The coefficients of the Muskingum-
Cunge method are based on data such as cross 
section and estimated Manning’s n and are 
more physically based than the Muskingum 
method. Therefore, the Muskingum-Cunge 
method can be applied to ungaged streams. 
However, it cannot account for backwater ef-
fects, and the method begins to diverge from 
the full unsteady flow solution when very rap-
idly rising hydrographs are routed through flat 
channel sections.

•	 Quasi-steady dynamic wave approxima-
tion—The third simplification of the full 
dynamic wave equations is the quasi-steady 
dynamic wave approximation. In the case of 
flood routing, the last two terms in the momen-
tum equation are often opposite in sign and 
tend to counteract each other. By including the 
convective acceleration term and not the local 
acceleration term, an error is introduced. This 
error is of greater magnitude than the error that 
results when both terms are excluded, as in 
the diffusion wave model. This approach is not 
often used in flood routing.

•	 Dynamic wave equations—The dynamic wave 
equations can be applied to a wide range of 
one-dimensional flow problems, such as dam 
break flood wave routing, tidal fluctuations, 
canal distribution, and forecasting water sur-
face elevations and velocities in a river system 
during a flood. Solution of the full equations 
is normally accomplished with an explicit or 
implicit finite difference technique. The equa-
tions are solved for incremental times (dt) and 
incremental distances (dx) along the waterway.
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654.0614	 Hydraulics input into 
the stream design process

(a)	 Determining project scope and level 
of analysis

Hydraulic engineering contributions to stream design 
can be viewed as a three-dimensional process. The 
most important two dimensions are the type of project 
and the stage of the project.

The third dimension is the constraint of time and/or 
cost that is not strictly engineering related. The role 
of the hydraulic engineer in this third dimension is to 
apply the standards of professional engineering licen-
sure. If time or cost prevents an analysis from meeting 
professional engineering standards, the engineer must 
inform project managers and act accordingly.

The level of detail required of a hydraulic analysis falls 
into one of three categories: rough estimation, stan-

dard engineering, and atypical complexity. Generally, 
the reconnaissance stage of a project requires a rough 
estimation level of detail, although many standard engi-
neering procedures are not time consuming nor difficult 
to apply, so that often a reconnaissance stage can be 
supported with a greater level of detail. For the remain-
ing project stages, standard engineering procedures are 
minimally required. However, depending on the project 
particulars, atypical complexity may be necessary.

Each project type, as identified in table 6–2, will have 
pertinent hydraulic parameters, computations, and an 
applicable level of detail. The scope of the hydraulic 
analysis is tied to the project, and each project type 
generally corresponds with a hydrology type as shown 
in table 6–3.

When providing hydraulic computations, the designer 
should also estimate uncertainties, be able to specify 
their source, and provide confidence limits. Engi-
neering in a stream corridor requires field work. The 
greater the quantity or precision of results needed, the 
greater the amount of field data required. Time and hu-
man labor cost may be expected to rise accordingly.

Table 6–2	 Project dimensions by type and stage of project

Dimension 1

Type of project

1 Flood prevention or flood level determination

2 Bed and bank scour prevention, streambank 
protection

3 New or relocated channel design

4 Design of structures (bridge, culvert, levee, drop, 
weir)

5 Habitat or vegetation enhancement

6 Flood plain reconnection

Dimension 2

Dimension of project

1 Reconnaissance

2 Planning

3 Design

4 Monitoring

Table 6–3	 Scope of hydraulic analyses by project type

Flow level Major concerns Project types

1 Low flow Duration 5

2 Bankfull flow Duration and frequency 2, 3, 6

3 Overbank flows Frequency 1

4 Specific flow levels Frequency 4
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	 Accounting for uncertainty and risk

The hydraulic engineer must always keep in mind 
the level of certainty inherent in data measurements, 
computational methods, and information provided by 
others. For example, the frequency of flows developed 
by a hydrologist is, at best, a statistical derivation with 
confidence limits. The hydraulic engineer can inspect 
the steepness of the frequency curve, as well as the 
confidence limits to determine the range of flows that 
should be associated with a given recurrence inter-
val. If the hydrologist had no gage data from which to 
develop frequency information, the hydrology would 
probably be considered even less reliable.

As described in this chapter, numerous methods in 
hydraulic engineering were developed from empirical 
studies. The designer should know what situations are 
and are not applicable to a given methodology. When-
ever simplified methods are employed, the designer 
should be aware of the sacrifice in confidence of 
results.

One typical response in the attempt to minimize the 
risk due to uncertainty is to use factors of safety 
and be conservative. However, it is critical that the 
designer apply factors of safety to the correct calcu-
lations and be conservative in the correct aspect of 
the analysis. To be conservative from a flood control 
perspective is to design a larger than necessary chan-
nel. However, if the goal of the project is to reconnect 
the flood plain, that designer’s conservatism may lead 
to design failure.

The designer should keep track of each computational 
attempt to account for uncertainty. In each case, an 
adjustment should be justified by a description of the 
source of the uncertainty and reasoning regarding the 
magnitude of the adjustment. In many cases, a conven-
tional factor of safety will have been established by 
the field of hydraulic engineering. Standard freeboard 
heights for channel design are also conventional.

Finally, the hydraulic engineer may wish to more fully 
document the impact of uncertainties by modeling 
what-if scenarios, considering extreme values of one 
or more parameters.

654.0615	 Conclusion

This chapter provided an overview of the hydraulic en-
gineering concepts involved in stream design. A num-
ber of typical hydraulic computations were provided 
as examples. This discussion can help all disciplines 
better understand the role of hydraulics in the stream 
design process.
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