An Introduction to Soil Stabilization with Portland Cement

Course No: G02-012
Credit: 2 PDH

J. Paul Guyer, P.E., R.A., Fellow ASCE, Fellow AEI

Continuing Education and Development, Inc.
22 Stonewall Court
Woodcliff Lake, NJ 07677

P: (877) 322-5800
info@cedengineering.com
An Introduction to Soil Stabilization with Portland Cement

J. Paul Guyer, P.E., R.A.
Editor

Paul Guyer is a registered civil engineer, mechanical engineer, fire protection engineer and architect with 35 years of experience designing buildings and related infrastructure. For an additional 9 years he was a principal staff advisor to the California Legislature on capital outlay and infrastructure issues. He is a graduate of Stanford University and has held numerous national, state and local offices with the American Society of Civil Engineers, Architectural Engineering Institute and National Society of Professional Engineers. He is a Fellow of ASCE and AEI.
CONTENTS

1. STABILIZATION WITH PORTLAND CEMENT
2. STABILIZATION WITH LIME
3. STABILIZATION WITH LIME-FLY ASH (LF) AND LIME-CEMENT-FLY ASH (LCF)
4. STABILIZATION WITH BITUMEN
5. STABILIZATION WITH LIME-CEMENT AND LIME-BITUMEN
6. LIME TREATMENT OF EXPANSIVE SOILS

(This publication is adapted from the Unified Facilities Criteria of the United States government which are in the public domain, have been authorized for unlimited distribution, and are not copyrighted.)
1. STABILIZATION WITH PORTLAND CEMENT. Portland cement can be used either to modify and improve the quality of the soil or to transform the soil into a cemented mass with increased strength and durability. The amount of cement used will depend upon whether the soil is to be modified or stabilized.

1.1 TYPES OF PORTLAND CEMENT. Several different types of cement have been used successfully for stabilization of soils. Type I normal portland cement and Type IA air-entraining cements were used extensively in the past and gave about the same results. At the present time, Type II cement has largely replaced Type I cement as greater sulfate resistance is obtained while the cost is often the same. High early strength cement (Type III) has been found to give a higher strength in some soils. Type III cement has a finer particle size and a different compound composition than do the other cement types. Chemical and physical property specifications for portland cement can be found in ASTM C 150.

1.2 SCREENING TESTS FOR ORGANIC MATTER AND SULFATES. The presence of organic matter and/or sulfates may have a deleterious effect on soil cement. Tests are available for detection of these materials and should be conducted if their presence is suspected.

1.2.1 ORGANIC MATTER. A soil may be acid, neutral, or alkaline and still respond well to cement treatment. Although certain types of organic matter, such as undecomposed vegetation, may not influence stabilization adversely, organic compounds of lower
molecular weight, such as nucleic acid and dextrose, act as hydration retarders and reduce strength. When such organics are present they inhibit the normal hardening process. A pH test to determine the presence of organic material is presented in appendix B. If the pH of a 10:1 mixture (by weight) of soil and cement 15 minutes after mixing is at least 12.0, it is probable that any organics present will not interfere with normal hardening.

1.2.2 SULFATES. Although sulfate attack is known to have an adverse effect on the quality of hardened portland cement concrete, less is known about the sulfate resistance of cement stabilized soils. The resistance to sulfate attack differs for cement-treated coarse-grained and fine-grained soils and is a function of sulfate concentrations. Sulfate-clay reactions can cause deterioration of fine-grained soil-cement. On the other hand, granular soil-cements do not appear susceptible to sulfate attack. In some cases the presence of small amounts of sulfate in the soil at the time of mixing with the cement may even be beneficial. The use of sulfate-resistant cement may not improve the resistance of clay-bearing soils, but may be effective in granular soil-cements exposed to adjacent soils and/or ground water containing high sulfate concentrations. The use of cement for fine-grained soils containing more than about 1 percent sulfate should be avoided.

1.3 WATER FOR HYDRATION. Potable water is normally used for cement stabilization, although sea water has been found to be satisfactory.

1.4 GRADATION REQUIREMENTS. Gradation requirements for cement stabilized base and subbase courses are indicated in table 3-1.
1.5 CEMENT CONTENT FOR MODIFICATION OF SOILS.

1.5.1 IMPROVE PLASTICITY. The amount of cement required to improve the quality of the soil through modification is determined by the trial-and-error approach. If it is desired to reduce the PI of the soil, successive samples of soil-cement mixtures must be prepared at different treatment levels and the PI of each mixture determined. The Referee Test of ASTM D 423 and ASTM D 424 procedures will be used to determine the PI of the soil-cement mixture. The minimum cement content that yields the desired PI is selected, but since it was determined based upon the minus 40 fraction of the material, this value must be adjusted to find the design cement content based upon total sample weight expressed as

\[A = 100BC \]

(eq 3-1)
where

- $A =$ design cement content, percent total weight of soil
- $B =$ percent passing No. 40 sieve size, expressed as a decimal
- $C =$ percent cement required to obtain the desired PI of minus 40 material, expressed as a decimal

1.5.2 IMPROVE GRADATION. If the objective of modification is to improve the gradation of a granular soil through the addition of fines then particle-size analysis (ASTM D 422) should be conducted on samples at various treatment levels to determine the minimum acceptable cement content.

1.5.3 REDUCE SWELL POTENTIAL. Small amounts of portland cements may reduce swell potential of some swelling soils. However, portland cement generally is not as effective as lime and may be considered too expensive for this application. The determination of cement content to reduce the swell potential of fine-grained plastic soils can be accomplished by molding several samples at various cement contents and soaking the specimens along with untreated specimens for 4 days. The lowest cement content that eliminates the swell potential or reduces the swell characteristics to the minimum is the design cement content. Procedures for measuring swell characteristics of soils are found in MIL-STD-621A, Method 101. The cement content determined to accomplish soil modification should be checked to see whether it provides an unconfined compressive strength great enough to qualify for a reduced thickness design in accordance with criteria established for soil stabilization.
1.5.4 FROST AREAS. Cement-modified soil may also be used in frost areas, but in
addition to the procedures for mixture design described above and cured specimens
should be subjected to the 12 freeze-thaw cycles prescribed by ASTM D 560 (but omitting
wire-brushing) or other applicable freeze-thaw procedures. This should be followed by
determination of frost design soil classification by means of standard laboratory freezing
tests. If cement-modified soil is used as subgrade, its frost susceptibility, determined after
freeze-thaw cycling, should be used as the basis of the pavement thickness design if the
reduced subgrade design method is applied.

1.6 CEMENT CONTENT FOR STABILIZED SOIL. The following procedure is
recommended for determining the design cement content for cement-stabilized soils.

- Step 1. Determine the classification and gradation of the untreated soil following
 procedures in ASTM D 422 and D 2487, respectively.

- Step 2. Using the soil classification select an estimated cement content for
 moisture-density tests from table 3-2.
Table 3-2

Cement requirements for various soils

<table>
<thead>
<tr>
<th>Soil Classification</th>
<th>Initial Estimated Cement Content percent dry weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW, SW</td>
<td>5</td>
</tr>
<tr>
<td>GP, GW-GC, GW-GM, SW-SC, SW-SM</td>
<td>6</td>
</tr>
<tr>
<td>CL, ML, MH</td>
<td>9</td>
</tr>
<tr>
<td>CH</td>
<td>11</td>
</tr>
</tbody>
</table>

- **Step 3.** Using the estimated cement content, conduct moisture-density tests to determine the maximum dry density and optimum water content of the soil-cement mixture. The procedure contained in ASTM D 558 will be used to prepare the soil-cement mixture and to make the necessary calculations; however, the procedures outlined in MIL-STD 621, Method 100 (CE 55 effort), or ASTM D 1557 will be used to conduct the moisture density test.

- **Step 4.** Prepare triplicate samples of the soil-cement mixture for unconfined compression and durability tests at the cement content selected in step 2 and at cement contents 2 percent above and 2 percent below that determined in step 2. The samples should be prepared at the density and water content to be expected in field construction. For example, if the design density is 95 percent of the
laboratory maximum density, the samples should also be prepared at 95 percent. The samples should be prepared in accordance with ASTM D 1632 except that when more than 35 percent of the material is retained on the No. 4 sieve, a 4-inch diameter by 4-inch-high mold should be used to prepare the specimens. Cure the specimens for 7 days in a humid room before testing. Test three specimens using the unconfined compression test in accordance with ASTM D 1633, and subject three specimens to durability tests, either wet-dry (ASTM D 559) or freeze-thaw (ASTM D 560) tests as appropriate. The frost susceptibility of the treated material should also be determined as indicated in appropriate pavement design manuals.

- Step 5. Compare the results of the unconfined compressive strength and durability tests with the requirements shown in tables 2-2 and 2-3. The lowest cement content which meets the required unconfined compressive strength requirement and demonstrates the required durability is the design cement content. If the mixture should meet the durability requirements but not the strength requirements, the mixture is considered to be a modified soil. If the results of the specimens tested do not meet both the strength and durability requirements, then a higher cement content may be selected and steps 1 through 4 above repeated.
2. STABILIZATION WITH LIME. In general, all lime treated fine-grained soils exhibit decreased plasticity, improved workability and reduced volume change characteristics. However, not all soils exhibit improved strength characteristics. It should be emphasized that the properties of soil-lime mixtures are dependent on many variables. Soil type, lime type, lime percentage and curing conditions (time, temperature, moisture) are the most important.

2.1 TYPES OF LIME. Various forms of lime have been successfully used as soil stabilizing agents for many years. However, the most commonly used products are hydrated high-calcium lime, monohydrated dolomitic lime, calcitic quicklime, and dolomitic quicklime. Hydrated lime is used most often because it is much less caustic than quicklime, however, the use of quicklime for soil stabilization has increased in recent years mainly with slurrytype applications. The design lime contents determined from the criteria presented herein are for hydrated lime. If quicklime is used the design lime contents determined herein for hydrated lime should be reduced by 25 percent. Specifications for quicklime and hydrated lime may be found in ASTM C 977.

2.2 GRADATION REQUIREMENTS. Gradation requirements for lime stabilized base and subbase courses are presented in table 3-3.

2.3 LIME CONTENT FOR LIME-MODIFIED SOILS. The amount of lime required to improve the quality of a soil is determined through the same trial-and-error process used for cement-modified soils.
2.4 LIME CONTENT FOR LIME-STABILIZED SOILS. The following procedures are recommended for determining the lime content of lime stabilized soils.

- Step 1. The preferred method for determining an initial design lime content is the pH test. In this method several lime-soil slurries are prepared at different lime treatment levels such as 2, 4, 6, and 8 percent lime and the pH of each slurry is determined. The lowest lime content at which a pH of about 12.4 (the pH of free lime) is obtained is the initial design lime content. Procedures for conducting the pH test are indicated in appendix D. An alternate method of determining an initial design lime content is by the use of figure 3-1. Specific values required to use figure 3-1 are the PI and the percent of material passing the No. 40 sieve.
Step 2. Using the initial design lime content conduct moisture-density tests to determine the maximum dry density and optimum water content of the soil-lime mixture. The procedures contained in ASTM D 3551 will be used to prepare the soil-lime mixture. The moisture density test will be conducted following procedures in ASTM D 1557.

Step 3. Prepare triplicate samples of the soil-lime mixture for unconfined compression and durability tests at the initial design lime content and at lime contents 2 and 4 percent above design if based on the preferred method or 2 percent above at 2 percent below design if based on the alternate method. The mixture should be prepared as indicated in ASTM D 3551. If less than 35 percent of the soil is retained on the No. 4 sieve, the sample should be approximately 2 inches in diameter and 4 inches high. If more than 35 percent is retained on the No. 4 sieve, samples should be 4 inches in diameter and 8 inches high. The samples should be prepared at the density and water content expected in field construction. For example, if the design density is 95 percent of the laboratory maximum density, the sample should be prepared at 95 percent density. Specimens should be cured in a sealed container to prevent moisture loss and lime carbonation. Sealed metal cans, plastic bags, and so forth are satisfactory. The preferred method of curing is 73 degrees F for 28 days. Accelerated curing at 120 degrees F for 48 hours has also been found to give satisfactory results; however, check tests at 73 degrees for 28 days should also be conducted. Research has indicated that if accelerated curing temperatures are too high, the
pozzolanic compounds formed during laboratory curing could differ substantially from those that would develop in the field.

- **Step 4.** Test three specimens using the unconfined compression test. If frost design is a consideration, test three specimens to 12 cycles of freeze-thaw durability tests (ASTM D 560) except wire brushing is omitted. The frost susceptibility of the treated material should be determined as indicated in appropriate design manuals.

- **Step 5.** Compare the results of the unconfined compressive strength and durability tests with the requirements shown in tables 2-2 and 2-3. The lowest lime content which meets the unconfined compressive strength requirement and demonstrates the required durability is the design lime content. The treated material also must meet frost susceptibility requirements as indicated in the appropriate pavement design manuals. If the mixture should meet the durability requirements but not the strength requirements, it is considered to be a modified soil. If results of the specimens tested do not meet both the strength and durability requirements, a higher lime content may be selected and steps 1 through 5 repeated.
3. STABILIZATION WITH LIME-FLY ASH (LF) AND LIME-CEMENT-FLY ASH (LCF).

Stabilization of coarse-grained soils having little or no tines can often be accomplished by the use of LF or LCF combinations. Fly ash, also termed coal ash, is a mineral residual from the combustion of pulverized coal. It contains silicon and aluminum compounds that, when mixed with lime and water, forms a hardened cementitious mass capable of obtaining high compressive strengths. Lime and fly ash in combination can often be used successfully in stabilizing granular materials since the fly ash provides an agent, with which the lime can react. Thus LF or LCF stabilization is often appropriate for base and subbase course materials.

3.1 TYPES OF FLY ASH. Fly ash is classified according to the type of coal from which the ash was derived. Class C fly ash is derived from the burning of lignite or subbituminous coal and is often referred to as “high lime” ash because it contains a high percentage of lime. Class C fly ash is self-reactive or cementitious in the presence of water, in addition to being pozzolanic. Class F fly ash is derived from the burning of anthracite or bituminous coal and is sometimes referred to as “low lime” ash. It requires the addition of lime to form a pozzolanic reaction.

3.2 EVALUATION OF FLY-ASH. To be acceptable quality fly ash used for stabilization must meet the requirements indicated in ASTM C 593.

3.3 GRADATION REQUIREMENTS. Gradation requirements for LF and LCF stabilized base and subbase course are indicated in table 3-4.
Figure 3-1

Chart for the initial determination of lime content.
3.4 SELECTION OF LIME-FLY ASH CONTENT FOR LF AND STEP 2. Determine the ratio of lime to fly ash that will yield highest strength and durability. Design with LF is somewhat different from stabilization with lime or cement. For a given combination of materials (aggregate, fly ash, water content determined in step 1), prepare three specimens at three different lime-fly ash ratios following procedures indicated in MIL-STD 621 Method 100 (less effort) or ASTM D 1557. Use fly ash. It is generally recognized that engineering LF ratios of 1:3, 1:4, and 1:5. If desired about 1 characteristics such as strength and durability are directly related to the quality of the matrix material. The matrix material is that part consisting of fly ash, lime, and minus No. 4 aggregate fines. Basically, higher strength and improved durability are

<table>
<thead>
<tr>
<th>Type Course</th>
<th>Sieve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>2 in.</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>¾ in.</td>
<td>70-100</td>
</tr>
<tr>
<td></td>
<td>3/8 in.</td>
<td>50-80</td>
</tr>
<tr>
<td></td>
<td>No. 4</td>
<td>35-70</td>
</tr>
<tr>
<td></td>
<td>No. 8</td>
<td>25-55</td>
</tr>
<tr>
<td></td>
<td>No. 16</td>
<td>10-45</td>
</tr>
<tr>
<td></td>
<td>No. 200</td>
<td>0-15</td>
</tr>
<tr>
<td>Subbase</td>
<td>1½ in.</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>No. 4</td>
<td>45-100</td>
</tr>
<tr>
<td></td>
<td>No. 40</td>
<td>10-50</td>
</tr>
<tr>
<td></td>
<td>No. 200</td>
<td>0-15</td>
</tr>
</tbody>
</table>

Table 3-4
Gradation requirements for fly ash stabilized base and subbase courses
achievable when the matrix material is able to “float” the coarse aggregate particles. In effect, the fine size particles overfill the void spaces between the coarse aggregate particles. For each coarse aggregate material, there is a quantity of matrix required to effectively fill the available void spaces and to “float” the coarse aggregate particles. The quantity of matrix required for maximum dry density of the total mixture is referred to as the optimum fines content. In LF mixtures it is recommended that the quantity of matrix be approximately 2 percent above the optimum fines content. At the recommended fines content, the strength development is also influenced by the ratio of lime to fly ash. Adjustment of the lime-fly ash ratio will yield different values of strength and durability properties. percent of portland cement may be added at this time.

- Step 3. Test three specimens using the unconfined compression test. If frost design is a consideration, subject three specimens to 12 cycles of freeze-thaw durability tests (ASTM D 560) except wire brushing is omitted. The frost susceptibility of the treated material shall also be determined as indicated in appropriate design manual.

- Step 4. Compare the results of the unconfined compressive strength and durability tests with the requirements shown in tables 2-2 and 2-3. The lowest LF ratio content, i.e., ratio with the lowest lime content which meets the required unconfined compressive strength requirement and demonstrates the required durability, is the design LF content. The treated material must also meet frost susceptibility requirements as indicated in the appropriate pavement design manuals. If the
mixture should meet the durability requirements but not the strength requirements, it is considered to be a modified soil. If the results of the specimens tested do not meet both the strength and durability requirements, a different LF content may be selected or additional portland cement used and steps 2 through 4 repeated.

3.5 SELECTION OF CEMENT CONTENT FOR LCF MIXTURES. Portland cement may also be used in combination with LF for improved strength and durability. If it is desired to incorporate cement into the mixture, the same procedures indicated for LF design should be followed except that, beginning at step 2, the cement shall be included. Generally, about 1 to 2 percent cement is used. Cement may be used in place of or in addition to lime however, the total tines content should be maintained. Strength and durability tests must be conducted on samples at various LCF ratios to determine the combination that gives best results.
4. STABILIZATION WITH BITUMEN. Stabilization of soils and aggregates with asphalt differs greatly from cement and lime stabilization. The basic mechanism involved in asphalt stabilization of fine-grained soils is a waterproofing phenomenon. Soil particles or soil agglomerates are coated with asphalt that prevents or slows the penetration of water which could normally result in a decrease in soil strength. In addition, asphalt stabilization can improve durability characteristics by making the soil resistant to the detrimental effects of water such as volume. In noncohesive materials, such as sands and gravel, crushed gravel, and crushed stone, two basic mechanisms are active: waterproofing and adhesion. The asphalt coating on the cohesionless materials provides a membrane which prevents or hinders the penetration of water and thereby reduces the tendency of the material to lose strength in the presence of water. The second mechanism has been identified as adhesion. The aggregate particles adhere to the asphalt and the asphalt acts as a binder or cement. The cementing effect thus increases shear strength by increasing cohesion. Criteria for design of bituminous stabilized soils and aggregates are based almost entirely on stability and gradation requirements. Freeze-thaw and wet-dry durability tests are not applicable for asphalt stabilized mixtures.

4.1 TYPES OF BITUMINOUS STABILIZED SOILS.

4.1.1 SAND BITUMEN. A mixture of sand and bitumen in which the sand particles are cemented together to provide a material of increased stability.
4.1.2 GRAVEL OR CRUSHED AGGREGATE BITUMEN. A mixture of bitumen and a well-graded gravel or crushed aggregate that, after compaction, provides a highly stable waterproof mass of subbase or base course quality.

4.1.3 BITUMEN LIME. A mixture of soil, lime, and bitumen that, after compaction, may exhibit the characteristics of any of the bitumen-treated materials indicated above. Lime is used with material that have a high PI, i.e. above 10.

4.2 TYPES OF BITUMEN. Bituminous stabilization is generally accomplished using asphalt cement, cutback asphalt, or asphalt emulsions. The type of bitumen to be used depends upon the type of soil to be stabilized, method of construction, and weather conditions. In frost areas, the use of tar as a binder should be avoided because of its hightemperature susceptibility. Asphalts are affected to a lesser extent by temperature changes, but a grade of asphalt suitable to the prevailing climate should be selected. As a general rule, the most satisfactory results are obtained when the most viscous liquid asphalt that can be readily mixed into the soil is used. For higher quality mixes in which a central plant is used, viscosity-grade asphalt cements should be used. Much bituminous stabilization is performed in place with the bitumen being applied directly on the soil or soilaggregate system and the mixing and compaction operations being conducted immediately thereafter. For this type of construction, liquid asphalts, i.e., cutbacks and emulsions, are used. Emulsions are preferred over cutbacks because of energy constraints and pollution control efforts. The specific type and grade of bitumen will depend on the characteristics of the aggregate, the type of construction equipment, and
climatic conditions. Generally, the following types of bituminous materials will be used for
the soil gradation indicated:

4.2.1 OPEN-GRADED AGGREGATE.

4.2.1.1 RAPID- AND MEDIUM-CURING liquid asphalts RC-250, RC-800, and MC-3000.

4.2.1.2 MEDIUM-SETTING ASPHALT EMULSION MS-2 and CMS-2.

4.2.2 WELL-GRADED AGGREGATE with little or no material passing the No. 200 sieve.

4.2.2.1 RAPID AND MEDIUM-CURING LIQUID ASPHALTS RC-250, RC-800, MC-250,
and MC-800.

4.2.2.2 SLOW-CURING LIQUID ASPHALTS SC-250 and SC-800.

4.2.2.3 MEDIUM-SETTING AND slow-setting asphalt emulsions MS-2, CMS-2, SS-1,
and CSS-1.

4.2.3 AGGREGATE WITH A CONSIDERABLE percentage of fine aggregate and
material passing the No. 200 sieve.

4.2.3.1 MEDIUM-CURING LIQUID ASPHALT MC-250 AND MC-800.
4.2.3.2 SLOW-CURING LIQUID ASPHALTS SC-250 AND SC-800.

4.2.3.3 SLOW-SETTING ASPHALT EMULSIONS SS-1, SS-01H, CSS-1, AND CSS-LH.

The simplest type of bituminous stabilization is the application of liquid asphalt to the surface of an unbound aggregate road. For this type of operation, the slow- and medium-curing liquid asphalts SC-70, SC-250, MC-70, and MC-250 are used.

4.3 SOIL GRADATION. The recommended soil gradations for subgrade materials and base or subbase course materials are shown in tables 3-5 and 3-6, respectively.

<table>
<thead>
<tr>
<th>Sleeve Size</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 in.</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>50-100</td>
</tr>
<tr>
<td>No. 30</td>
<td>35-100</td>
</tr>
<tr>
<td>No. 200</td>
<td>2-30</td>
</tr>
</tbody>
</table>

Table 3-5.
Recommended gradations for bituminousstabilized subgrade materials
4.4 MIX DESIGN. For subgrade stabilization, the following equation may be used for estimating the preliminary quantity of cutback asphalt to be selected:

\[
p = \frac{0.02(a) + 0.07(b) + 0.15(c) + 0.20(d)}{(100 - S)} \times 100 \text{ (eq 3-2)}
\]

where

- \(p \) = percent cutback asphalt by weight of dry aggregate
- \(a \) = percent of mineral aggregate retained on No. 50 sieve
- \(b \) = percent of mineral aggregate passing No. 50 sieve and retained on No. 100 sieve
- \(c \) = percent of mineral aggregate passing No. 100 and retained on No. 200 sieve
- \(d \) = percent of mineral aggregate passing No. 200
- \(S \) = percent solvent

Table 3-6

Recommended gradations for bituminous-stabilized base and subbase materials

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>1½ in.</th>
<th>1 in.</th>
<th>% in.</th>
<th>½ in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1½ in.</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 in.</td>
<td>84±9</td>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>¾ in.</td>
<td>76±9</td>
<td>83±9</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>5/8 in.</td>
<td>68±9</td>
<td>73±9</td>
<td>82±9</td>
<td>100</td>
</tr>
<tr>
<td>No. 4</td>
<td>45±9</td>
<td>48±9</td>
<td>64±9</td>
<td>62±9</td>
</tr>
<tr>
<td>No. 8</td>
<td>35±9</td>
<td>36±9</td>
<td>41±9</td>
<td>47±9</td>
</tr>
<tr>
<td>No. 10</td>
<td>27±9</td>
<td>28±9</td>
<td>32±9</td>
<td>36±9</td>
</tr>
<tr>
<td>No. 16</td>
<td>20±9</td>
<td>21±9</td>
<td>24±9</td>
<td>28±9</td>
</tr>
<tr>
<td>No. 30</td>
<td>14±7</td>
<td>16±7</td>
<td>17±7</td>
<td>20±7</td>
</tr>
<tr>
<td>No. 100</td>
<td>9±5</td>
<td>11±5</td>
<td>12±5</td>
<td>14±5</td>
</tr>
<tr>
<td>No. 200</td>
<td>5±2</td>
<td>5±2</td>
<td>5±2</td>
<td>5±2</td>
</tr>
</tbody>
</table>
The preliminary quantity of emulsified asphalt to be used in stabilizing subgrades can be determined from table 3-7. The final design content of cutback or emulsified asphalt should be selected based upon the results of the Marshal Stability test procedure. The minimum Marshall Stability recommended for subgrades is 500 pounds. If a soil does not show increased stability when reasonable amounts of bituminous materials are added, the gradation of the soil should be

<table>
<thead>
<tr>
<th>Percent Passing No. 200 Sieve</th>
<th>Pounds of Emulsified Asphalt per 100 pound of Dry Aggregate at Percent Passing No. 10 Sieve</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td><50 60 63 66 69 72 75 78 81 84 87 90 93 96 99</td>
</tr>
<tr>
<td>2</td>
<td>6.0 6.3 6.6 6.9 7.2 7.5 7.8 8.1 8.4 8.7 9.0 9.3 9.6 9.9</td>
</tr>
</tbody>
</table>
| 4 | 6.5 6.7 7.0 7.3 7.6 7.9 8.2 8.5 8.8 9.1 9.4 9.7 10.0 10.3 10.6 10.9 11.2 11.5 11.8 12.1 12.4 12.7 13.0 13.3 13.6 13.9 14.2 14.5 14.8 15.1 15.4 15.7 16.0 16.3 16.6 16.9 17.2 17.5 17.8 18.1 18.4 18.7 19.0 19.3 19.6 19.9 20.2 20.5 20.8 21.1 21.4 21.7 22.0 22.3 22.6 22.9 23.2 23.5 23.8 24.1 24.4 24.7 25.0 25.3 25.6 25.9 26.2 26.5 26.8 27.1 27.4 27.7 28.0 28.3 28.6 28.9 29.2 29.5 29.8 30.1 30.4 30.7 31.0 31.3 31.6 31.9 32.2 32.5 32.8 33.1 33.4 33.7 34.0 34.3 34.6 34.9 35.2 35.5 35.8 36.1 36.4 36.7 37.0 37.3 37.6 37.9 38.2 38.5 38.8 39.1 39.4 39.7 40.0 40.3 40.6 40.9 41.2 41.5 41.8 42.1 42.4 42.7 43.0 43.3 43.6 43.9 44.2 44.5 44.8 45.1 45.4 45.7 46.0 46.3 46.6 46.9 47.2 47.5 47.8 48.1 48.4 48.7 49.0 49.3 49.6 49.9 50.2 50.5 50.8 51.1 51.4 51.7 52.0 52.3 52.6 52.9 53.2 53.5 53.8 54.1 54.4 54.7 55.0 55.3 55.6 55.9 56.2 56.5 56.8 57.1 57.4 57.7 58.0 58.3 58.6 58.9 59.2 59.5 59.8 60.1 60.4 60.7 61.0 61.3 61.6 61.9 62.2 62.5 62.8 63.1 63.4 63.7 64.0 64.3 64.6 64.9 65.2 65.5 65.8 66.1 66.4 66.7 67.0 67.3 67.6 67.9 68.2 68.5 68.8 69.1 69.4 69.7 70.0 70.3 70.6 70.9 71.2 71.5 71.8 72.1 72.4 72.7 73.0 73.3 73.6 73.9 74.2 74.5 74.8 75.1 75.4 75.7 76.0 76.3 76.6 76.9 77.2 77.5 77.8 78.1 78.4 78.7 79.0 79.3 79.6 79.9 80.2 80.5 80.8 81.1 81.4 81.7 82.0 82.3 82.6 82.9 83.2 83.5 83.8 84.1 84.4 84.7 85.0 85.3 85.6 85.9 86.2 86.5 86.8 87.1 87.4 87.7 88.0 88.3 88.6 88.9 89.2 89.5 89.8 90.1 90.4 90.7 91.0 91.3 91.6 91.9 92.2 92.5 92.8 93.1 93.4 93.7 94.0 94.3 94.6 94.9 95.2 95.5 95.8 96.1 96.4 96.7 97.0 97.3 97.6 97.9 98.2 98.5 98.8 99.1 99.4 99.7 100.0

Table 3-7
Emulsified asphalt requirements

modified or another type of bituminous material should be used. Poorly graded materials may be improved by the addition of suitable tines containing considerable material passing the No. 200 sieve. The amount of bitumen required for a given soil increases with an increase in percentage of the liner sizes.
5. STABILIZATION WITH LIME-CEMENT AND LIME-BITUMEN. The advantage in using combination stabilizers is that one of the stabilizers in the combination compensates for the lack of effectiveness of the other in treating a particular aspect or characteristics of a given soil. For instance, in clay areas devoid of base material, lime has been used jointly with other stabilizers, notably portland cement or asphalt, to provide acceptable base courses. Since portland cement or asphalt cannot be mixed successfully with plastic clays, the lime is incorporated into the soil to make it friable, thereby permitting the cement or asphalt to be adequately mixed. While such stabilization practice might be more costly than the conventional single stabilizer methods, it may still prove to be economical in areas where base aggregate costs are high. Two combination stabilizers are considered in this section: lime-cement and lime-asphalt.

5.1 LIME-CEMENT. Lime can be used as an initial additive with portland cement or the primary stabilizer. The main purpose of lime is to improve workability characteristics mainly by reducing the plasticity of the soil. The design approach is to add enough lime to improve workability and to reduce the plasticity index to acceptable levels. The design lime content is the minimum that achieves desired results. The design cement content is arrived at following procedures for cement stabilized soils.

5.2 LIME-ASPHALT. Lime can be used as an initial additive with asphalt as the primary stabilizer. The main purpose of lime is to improve workability characteristics and to act as an anti-stripping agent. In the latter capacity, the lime acts to neutralize acidic chemicals in the soil or aggregate which tend to interfere with bonding of the asphalt. Generally,
about 1-2 percent lime is all that is needed for this objective. Since asphalt is the primary
stabilizer, the procedures for asphalt stabilized materials as presented in shall be
followed.
6. LIME TREATMENT OF EXPANSIVE SOILS. Expansive soils as defined for pavement purposes are those that exhibit swell in excess of three percent. Expansion is characterized by heaving of a pavement or road when water is imbibed in the clay minerals. The plasticity characteristics of a soil often are a good indicator of the swell potential as indicated in table 3-8. If it has been determined that a soil has potential for excessive swell, lime treatment may be appropriate. Lime will reduce swell in an expansive soil to greater or lesser degrees depending on the activity of the clay minerals present. The amount of lime to be added is the minimum amount that will reduce swell to acceptable limits. Procedure for conducting swell tests are indicated in ASTM D 1883. The depth to which lime should be incorporated into the soil is generally limited by the construction equipment used. However, 2 to 3 feet generally is the maximum depth that can be treated directly without removal of the soil.