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1. INTRODUCTION. This publication covers surface erosion, and analysis of flow
quantity and groundwater pressures associated with underseepage. Requirements are
given for methods of drainage and pressure relief. Control of soil erosion must be
considered in all new construction projects. Seepage pressures are of primary
importance in stability analysis and in foundation design and construction. Frequently,
drawdown of groundwater is necessary for construction. In other situations, pressure
relief must be incorporated in temporary and permanent structures. For erosion
analysis, the surface water flow characteristics, soil type, and slope are needed. For
analysis of major seepage problems, determine permeability and piezometric levels by

field observations.
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2. SEEPAGE ANALYSIS

2.1 FLOW NET. Figure 1 shows an example of flow net construction. Use this
procedure to estimate seepage quantity and distribution of pore water pressures in two-
dimensional flow. Flow nets are applicable for the study of cutoff walls and wellpoints, or
shallow drainage installations placed in a rectangular layout whose length in plan is
several times its width. Flow nets can also be used to evaluate concentration of flow

lines.

2.1.1 GROUNDWATER PRESSURES. For steady state flow, water pressures depend
on the ratio of mean permeability of separate strata and the anisotropy of layers. A
carefully drawn flow net is necessary to determine piezometric levels within the flow

field or position of the drawdown curve.
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Flow Net Construction and Seepage Analysis

Figure 1

Flow Net Construction and Seepage Analysis
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RULES FOR FLOW NET CONSTRUCTION

1. WHEN MATERIALS ARE ISOTROPIC WITH RESPECT TO PERMEABILITY, THE PATTERN OF
FLOW LINES AND EQUIPOTENTIALS INTERSECT AT RIGHT ANGLES. DRAW A PATTERN IN
WHICH SQUARE FIGURES ARE FORMED BETWEEN FLOW LINES AND EQUIPOTENTIALS.

2. USUALLY IT IS EXPEDIENT TO START WITH AN INTEGER NUMBER OF EQUIPOTENTIAL
DROPS, DIVIDING TOTAL HEAD BY A WHOLE NUMBER, AND DRAWING FLOW LINES TO
CONFORM TO THESE EQUIPOTENTIALS. IN THE GENERAL CASE, THE OUTER FLOW PATH WILL
FORM RECTANGULAR RATHER THEN SQUARE FIGURES. THE SHAPE OF THESE RECTANGLES
(RATIO B/L) MUST BE CONSTANT.

3. THE UPPER BOUNDARY OF A FLOW NET THAT IS AT ATMOSPHERIC PRESSURE IS A "FREE
WATER SURFACE". INTEGER EQUIPOTENTIALS INTERSECT THE FREE WATER SURFACE AT
POINTS SPACED AT EQUAL VERTICAL INTERVALS.

4. A DISCHARGE FACE THROUGH WHICH SEEPAGE PASSES IS AN EQUIPOTENTIAL LINE IF THE
DISCHARGE IS SUBMERGED, OR A FREE WATER SURFACE IF THE DISCHARGE IS NOT
SUBMERGED. IF IT IS A FREE WATER SURFACE, THE FLOW NET FIGURES ADJOINING THE
DISCHARGE FACE WILL NOT BE SQUARES.

5. IN A STRATIFIED SOIL PROFILE WHERE RATIO OF PERMEABILITY OF LAYERS EXCEEDS 10,
THE FLOW IN THE MORE PERMEABLE LAYER CONTROLS. THAT IS, THE FLOW NET MAY BE
DRAWN FOR MORE PERMEABLE LAYER ASSUMING THE LESS PERMEABLE LAYER TO BE
IMPERVIOUS. THE HEAD ON THE INTERFACE THUS OBTAINED IS IMPOSED ON THE LESS
PERVIOUS LAYER FOR CONSTRUCTION OF THE FLOW NET WITHIN IT.

6. IN A STRATIFIED SOIL PROFILE WHERE RATIO OF PERMEABILITY OF LAYERS IS LESS THAN
10, FLOW IS DEFLECTED AT THE INTERFACE IN ACCORDANCE WITH THE DIAGRAM SHOWN
ABOVE.

7. WHEN MATERIALS ARE ANISOTROPIC WITH RESPECT TO PERMEABILITY, THE CROSS
SECTION MAY BE TRANSFORMED BY CHANGING SCALE AS SHOWN ABOVE AND FLOW NET
DRAWN AS FOR ISOTROPIC MATERIALS. IN COMPUTING QUANTITY OF SEEPAGE, THE
DIFFERENTIAL HEAD IS NOT ALTERED FOR THE TRANSFORMATION.

8. WHERE ONLY THE QUANTITY OF SEEPAGE IS TO BE DETERMINED, AN APPROXIMATE FLOW
NET SUFFICES. IF PORE PRESSURES ARE TO BE DETERMINED, THE FLOW NET MUST BE
ACCURATE.

FIGURE 1 (continued)

Flow Net Construction and Seepage Analysis
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2.1.2 SEEPAGE QUANTITY. Total seepage computed from flow net depends
primarily on differential head and mean permeability of the most pervious layer. The
ratio of permeabilities of separate strata or their anisotropy has less influence. The ratio
n#/ng in Figure 1 usually ranges from %2 to %5 and thus for estimating seepage quantity a
roughly drawn flow net provides a reasonably accurate estimate of total flow.
Uncertainties in the permeability values are much greater limitations on accuracy. For
special cases, the flow regime can be analyzed by the finite element method.
Mathematical expressions for the flow are written for each of the elements, considering
boundary conditions. The resulting system of equations is solved by computer to obtain

the flow pattern..

2.2 SEEPAGE FORCES. The flow of water through soil exerts a force on the soil
called a seepage force. The seepage pressure is this force per unit volume of soil and is

equal to the hydraulic gradient times the unit weight of water.
PS = Yw
where:
Ps = seepage pressure
i = hydraulic gradient
yw = unit weight of water
The seepage pressure acts in a direction at right angles to the equipotential lines (see

Figure 1). The seepage pressure is of great importance in analysis of the stability of

excavations and slopes because it is responsible for the phenomenon known as boiling

or piping.
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2.2.1 BOILING. Boiling occurs when seepage pressures in an upward direction
exceed the downward force of the soil. The condition can be expressed in terms of

critical hydraulic gradient. A minimum factor of safety of 2 is usually required, i.e.,

lc = icritical = (YT —Yw) Yw = Yo/ Yw

Fs = Ic/l = 2

where:

i = actual hydraulic gradient
yr = total unit weight of the soil
yw [gamma]+W, = unit weight of water

Yb = buoyant unit weight of soil

2.2.2 PIPING AND SUBSURFACE EROSION. Most piping failures are caused by
subsurface erosion in or beneath dams. These failures can occur several months or
even years after a dam is placed into operation. In essence, water that comes out of
the ground at the toe starts a process of erosion (if the exit gradient is high enough) that
culminates in the formation of a tunnel-shaped passage (or "pipe") beneath the
structure. When the passage finally works backward to meet the free water, a mixture
of soil and water rushes through the passage, undermining the structure and flooding
the channel below the dam. It has been shown that the danger of a piping failure due to
subsurface erosion increases with decreasing grain size. Similar subsurface erosion
problems can occur in relieved drydocks, where water is seeping from a free source to a
drainage or filter blanket beneath the floor or behind the walls. If the filter fails or is
defective and the hydraulic gradients are critical, serious concentrations of flow can
result in large voids and eroded channels. Potential passageways for the initiation of
piping include: uniformly graded gravel deposits, conglomerate, open joints in bedrock,
cracks caused by earthquakes or crustal movements, open joints in pipelines, hydraulic

fracture, open voids in coarse boulder drains including French drains, abandoned
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wellpoint holes, gopher holes, cavities formed in levee foundations by rotting roots or
buried wood, improper backfilling of pipelines, pipes without antiseepage collars, etc.
Failure by piping requires progressive movement of soil particles to a free exit surface. It
can be controlled by adequately designed filters or relief blankets. Guidelines for
preventing piping beneath dams may be found in Reference 1, Security from Under

Seepage of Masonry Dams on Earth Foundations, by Lee.
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3. SEEPAGE CONTROL BY CUTOFF.

3.1 METHODS. Procedures for seepage control include cutoff walls for decreasing the
seepage quantity and reducing the exit gradients, and drainage or relief structures that
increase flow quantity but reduce seepage pressures or cause drawdown in critical

areas. See Table 1.

3.2 SHEETPILING. A driven line of interlocking steel sheeting may be utilized for a

cutoff as a construction expedient or as a part of the completed structure.

3.2.1 APPLICABILITY. The following considerations govern the use of sheetpiling:

© J. Paul Guyer 2013 10
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3.2.1.1 SHEETING is particularly suitable in coarse-grained material with maximum
sizes less than about 6 inches or in stratified subsoils with alternating fine grained and

pervious layers where horizontal permeability greatly exceeds vertical.

3.2.1.2 TO BE EFFECTIVE, sheeting must be carefully driven with interlocks intact.
Boulders or buried obstructions are almost certain to damage sheeting and break

interlock connections. Watertightness cannot be assumed if obstructions are present.

3.2.1.3 LOSS OF HEAD across a straight wall of intact sheeting depends on its
watertightness relative to the permeability of the surrounding soil. In homogeneous
fine-grained soil, head loss created by sheeting may be insignificant. In pervious sand
and gravel, head loss may be substantial depending on the extent to which the flow
path is lengthened by sheeting. In this case, the quantity of water passing through
intact interlocks may be as much as 0.1 gpm per foot of wall length for each 10 feet
differential in head across sheeting, unless special measures are taken to seal

interlocks.

3.2.2 PENETRATION REQUIRED. This paragraph and Paragraph "3.2.3" below apply
equally to all impervious walls listed in Table 1. Seepage beneath sheeting driven for
partial cutoff may produce piping in dense sands or heave in loose sands. Heave occurs
if the uplift force at the sheeting toe exceeds the submerged weight of the overlying soil
column. To prevent piping or heave of an excavation carried below groundwater,
sheeting must penetrate a sufficient depth below subgrade or supplementary drainage
will be required at subgrade. See Figure 2 (Reference 2, Model Experiments to Study
the Influence of Seepage on the Stability of a Sheeted Excavation in Sand, by
Marsland) for sheeting penetration required for various safety factors against heave or
piping in isotropic sands. For homogeneous but anisotropic sands, reduce the horizontal
cross-section dimensions by the transformation factor of Figure 1 to obtain the
equivalent cross section for isotropic conditions. See Figure 3 (Reference 2) for

sheeting penetration required in layered subsoils. For clean sand, exit gradients
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between 0.5 and 0.75 will cause unstable conditions for men and equipment operating
on the subgrade. To avoid this, provide sheeting penetration for a safety factor of 1.5 to

2 against piping or heave.

3.2.3 SUPPLEMENTARY MEASURES. If it is uneconomical or impractical to provide

required sheeting penetration, the seepage exit gradients may be reduced as follows:

3.2.3.1 FOR HOMOGENEOUS MATERIALS or soils whose permeability decreases
with depth, place wellpoints, pumping wells, or sumps within the excavation. Wellpoints
and pumping wells outside the excavation are as effective in some cases and do not

interfere with bracing or excavation.

3.2.3.2 FOR MATERIALS WHOSE PERMEABILITY INCREASES WITH DEPTH,

ordinary relief wells with collector pipes at subgrade may suffice.

3.2.3.3 A PERVIOUS BERM placed against the sheeting, or a filter blanket at
subgrade, will provide weight to balance uplift pressures. Material placed directly on the
subgrade should meet filter criteria. Sheeting is particularly suitable in coarse-grained
material with maximum sizes less than about 6 inches or in stratified subsoils with
alternating fine grained and pervious layers where horizontal permeability greatly

exceeds vertical.
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PENETRATION REQUIRED FOR CUT OFF WALL
IN SANDS OF INFINITE DEPTH
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FIGURE 2
Penetration of Cut Off Wall to Prevent Piping in Isotropic Sand

Figure 2

Penetration of Cut-off Wall to Prevent Piping in Isotropic Sand
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SAND UNDERLYING FINE SAND
PRESENCE OF COARSE LAYER MAXES FLOW N FINE MATERIAL MORE NEARLY

VERTICAL ANDGENERALLY  INCREASES SEEPAGE GRADIENTS IN THE
FINE LAYER COMPARED TO THE HOMOGENEOUS CROSS-SECTION OF
FIGURE 2.

¥F TOP OF COARSE LAYER IS AT A DEPTH BELOW CUT OFF WALL 80T TOM
GREATER THAN WiDTH OF EXCAVATION, SAFETY FACTORS OF FIGURE 2
POR INFINITE DEPTH APPLY.

F TOP OF COARSE LAYER [$ AT A DEFTH BELOW CUT OPF WALL BOTTOM
LESS THAN WIDTH OF EXCAVATION, THE UPLIFT PRESSURES ARE
GREATER THAN FOR THE HOMOGENEQUS CROBS-SECTION . IF PERMEABILITY
OF COARSE LAYER S MORE THAN TEN TIMES THAT OF FINE LAYER,
RAILURE HEAD (Hy ) * THICKNESS OF PINE LAYER (Hp).

FINE SAND UNDERLYING COARSE SAND
PRESENCE OF FINE LAYER CONSTRICTS FLOW BENEATH CUT OFF WALL
AND GENERALLY DECREASES SEEPAGE GRADIENTS N THE COARSE LAYER.

F TOP OF FINE LAYER LIES BELOW CUT OFF WALL BT TOM, SAFETY FACTORS
ARE INTERMEDIATE BETWEEN THOSE FOR AN iMPERMEABLE BOUNDARY
AT TOP OR BOTTOM OF THE FINE LAYER USING FIGURE 2.

IF TOP OF THE FINE LAYER LIES ABOVE CUT OFF WALL BOYTOM,THE SAFETY
FACTORS OF FIGURE 2 ARE SOMEWHAT CONSERYATIVE FOR PENETRATION
REQUIRED.

FIGURE 3

Penetration of Cut Off Wall Required to Preveat Piping in

Stratified Sand

Figure 3

Penetration of Cut-off Wall Required to Prevent Piping in Stratified Sand
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FINE LAYER IN HOMOGEREOUS SAND STRATUM

IF THE TOP OF FINE LAYER IS AT A DEPTH GREATER THAN
WIDTH OF EXCAVATION BELOW CUT OFF WALL BOTTOM SAFETY
FACTORS OF FIGURE 2 AFPLY, ASSUMING IMPERYIOUS BASE
AT TOP OF FINE LAYER .

IF TOP OF FINE LAYER IS AT A DEFTH LESS THAN WIOTH OF
EXCAVATION BELOW CUT OFF WALL TW'S, PRESSURE RELIEF
13 REQUMRED SO THAT UNBALANCED HEAD BELOW FINE
LAYER DOES NOT EXCEED MEIGHT OF S0IL ABOVE BASE OF
LAYER.

IF FINE LAYER LIES ABOVE SUBGRADE OF EXCAVATION FINAL
CONDITION IS SAFER THAN HOMOGENEOUS CASE,BUT
DANGEROUS CONDITION MAY ARISE DURING EXCAVATION
ABOVE THE FINE LAYER AND PRESSURE RELIEF IS REQUIRED
AS IN THE PRECEDING CASE .

.~ TOAVOID BOTTOM HEAVE, ¥ X Hz SHOULD BE GREATER THAN
- Yw XHg.

Yy = TOTAL UNIT WEIGHT OF THE SOIL

7w = UNIT WEIGHT OF WATER

NE LAYER (CLA

FIGURE 3 (continued)
Penetration of Cut Off Wall Required to Prevent Piping in
Stratified Sand

Figure 3 (continued)
Penetration of Cut-off Wall Required to Prevent Piping in Stratified Sand
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3.2.4 AN OUTSIDE OPEN WATER SOURCE may be blanketed with fines or bentonite
dumped through water or placed as a slurry. See Table 2. Evaluate the effectiveness of

these measures by flow net analysis.

3.3 GROUTED CUTOFF. Complete grouted cutoff is frequently difficult and costly to
attain. Success of grouting requires careful evaluation of pervious strata for selection of
appropriate grout mix and procedures. These techniques, in combination with other
cutoff or drainage methods, are particularly useful as a construction expedient to control

local seepage.

3.4 IMPERVIOUS SOIL BARRIERS. Backfiling of cutoff trenches with selected
impervious material and placing impervious fills for embankment cores are routine

procedures for earth dams.

3.4.1 COMPACTED IMPERVIOUS FILL. Properly constructed, these sections permit
negligible seepage compared to the flow through foundations or abutments. Pervious
layers or lenses in the compacted cutoff must be avoided by blending of borrow

materials and scarifying to bond successive lifts.

3.4.2 MIXED-IN-PLACE PILES. Overlapping mixed-in-place piles of cement and

natural soil forms a cofferdam with some shear resistance around an excavation.

3.4.3 SLURRY-FILLED TRENCH. Concurrent excavation of a straight sided trench
and backfilling with a slurry of bentonite with natural soil is done. Alternatively, a
cement bentonite mix can be used in a narrower trench where coarser gravel occurs. In
certain cases, tremie concrete may be placed, working upward from the base of a

slurry-filled trench, to form a permanent peripheral wall.
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4. DESIGN OF DRAINAGE BLANKET AND FILTERS

4.1 FILTERS. If water flows from a silt to a gravel, the silt will wash into the interstices

of the gravel. This could lead to the following, which must be avoided:

4.1.1. THE LOSS OF SILT may continue, causing creation of a cavity.

4.1.2 THE SILT MAY CLOG THE GRAVEL, stopping flow, and causing hydrostatic
pressure buildup. The purpose of filters is to allow water to pass freely across the
interface (filter must be coarse enough to avoid head loss) but still be sufficiently fine to
prevent the migration of fines. The filter particles must be durable, e.g., certain crushed
limestones may dissolve. Filter requirements apply to all permanent subdrainage
structures in contact with soil, including wells. See Figure 4 for protective filter design

criteria.
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The filter may be too fine grained to convey enough water, to provide a good working
surface, or to pass the water freely without loss of fines to a subdrain pipe. For this
condition, a second filter layer is placed on the first filter layer; the first filter layer is then
considered the soil to be protected, and the second filter layer is designed. The finest
filter soil is often at the base, with coarser layers above. This is referred to as reversed
or inverted filters. Concrete sand (ASTM C33, Specifications for Concrete Aggregates)
suffices as a filter against the majority of fine-grained soils or silty or clayey sands. For
non-plastic silt, varved silt, or clay with sand or silt lenses, use asphalt sand (ASTM
D1073, Specifications for Fine Aggregates for Bituminous Paving Mixtures) but always
check the criteria in Figure 4. Locally available natural materials are usually more
economical than processed materials, and should be used where they meet filter
criteria. The fine filter layer can be replaced with plastic filter cloths under the following
conditions (after Reference 3, Performance of Plastic Filter Cloths as a Replacement for

Granular Materials, by Calhoun, et al.):

4.1.2.1 NON-WOVEN FILTER CLOTHS, or woven filter cloths with less than 4% open
area should not be used where silt is present in sandy soils. A cloth with an equivalent
opening size (EOS) equal to the No. 30 sieve and an open area of 36% will retain sands

containing silt.

4.1.2.2 WHEN STONES ARE TO BE DROPPED DIRECTLY ON THE CLOTH, or
where uplift pressure from artesian water may be encountered, the minimum tensile
strengths (ASTM D1682, Tests for Breaking Load and Elongation of Textile Fabrics) in
the strongest and weakest directions should be not less than 350 and 200 Ibs.
respectively. Elongation at failure should not exceed 35%. The minimum burst strength
should be 520 psi (ASTM D751, Testing Coated Fabrics). Where the cloths are used in
applications not requiring high strength or abrasion resistance, the strength

requirements may be relaxed.

4.1.2.3 CLOTHS MADE OF POLYPROPYLENE, polyvinyl chloride and polyethylene

fibers do not deteriorate under most conditions, but they are affected by sunlight, and
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should be protected from the sun. Materials should be durable against ground pollutants

and insect attack, and penetration by burrowing animals.

4.1.2.4 WHERE FILTER CLOTHS ARE USED TO WRAP COLLECTION PIPES or in
similar applications, backfill should consist of clean sands or gravels graded such that
the Dgs is greater than the EOS of the cloth. When trenches are lined with filter cloth, the
collection pipe should be separated from the cloth by at least six inches of granular

material.

4.1.25 CLOTHS SHOULD BE MADE OF MONOFILAMENT YARNS, and the
absorption of the cloth should not exceed 1% to reduce possibility of fibers swelling and
changing EOS and percent of open area. For further guidance on types and properties
of filter fabrics see Reference 4, Construction and Geotechnical Engineering Using

Synthetic Fabrics, by Koerner and Welsh.

4.2 DRAINAGE BLANKET. Figure 5 shows typical filter and drainage blanket

installations.

4.2.1 PERMEABILITY. Figure 6 (Reference 5, Subsurface Drainage of Highways, by
Barber) gives typical coefficients of permeability for clean, coarse-grained drainage
material and the effect of various percentages of fines on permeability. Mixtures of
about equal parts gravel with medium to coarse sand have a permeability of

approximately 1 fpom. Single sized, clean gravel has a permeability exceeding 50 fpm.

4.2.2 DRAINAGE CAPACITY. Estimate the quantity of water which can be transmitted

by a drainage blanket as follows:

Q =kiA

where:
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q = quantity of flow, ft*/sec
k = permeability coefficient, ft/sec
i = average gradient in flow direction, ft/ft

A = cross sectional area of blanket, ft?

The gradient is limited by uplift pressures that may be tolerated at the point farthest from
the outlet of the drainage blanket. Increase gradients and flow capacity of the blanket by

providing closer spacing of drain pipes within the blanket.

4.2.2.1 PRESSURE RELIEF. See bottom panel of Figure 7 (Reference 6, Seepage
Requirements of Filters and Pervious Bases, by Cedergren) for combinations of drain
pipe spacing, drainage course thickness, and permeability required for control of flow

upward from an underlying aquifer under an average vertical gradient of 0.4.

4.2.2.2 RATE OF DRAINAGE. See the top panel of Figure 7 (Reference 5) for time
rate of drainage of water from a saturated base course beneath a pavement. Effective
porosity is the volume of drainable water in a unit volume of soil. It ranges from 25
percent for a uniform material such as medium to coarse sand, to 15 percent for a

broadly graded sand-gravel mixture.
4.2.2.3 DRAINAGE BLANKET DESIGN. The following guidelines should be followed:

e GRADATION. Design in accordance with Figure 4.

e THICKNESS. Beneath, structures require a minimum of 12 inches for each layer
with a minimum thickness of 24 inches overall. If placed on wet, yielding, uneven
excavation surface and subject to construction operation and traffic, minimum

thickness shall be 36 inches overall.
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Figure 6

Permeability and Capillarity of Drainage Materials
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4.2.2.4 CHEMICAL CLOGGING. Filter systems (filter layers, fabrics, pipes) can
become chemically clogged by ferruginous (iron) and carbonate depositions and
incrustations. Where the permanent subdrainage system is accessible, pipes with larger
perforations (3/8 inch) and increased thickness of filter layers can be used. For existing

facilities, a weak solution of hydrochloric acid can be used to dissolve carbonates.

4.3 INTERCEPTING DRAINS. Intercepting drains consist of shallow trenches with
collector pipes surrounded by drainage material, placed to intercept seepage moving
horizontally in an upper pervious stratum. To design proper control drains, determine
the drawdown and flow to drains by flow net analysis. Figure 8 shows typical

placements of intercepting drains for roadways on a slope.

4.4 SHALLOW DRAINS FOR PONDED AREAS. Drains consisting of shallow stone
trenches with collector pipes can be used to collect and control surface runoff. See
Figure 9 (Reference 7, Seepage Into Ditches From a Plane Water Table Overlying a
Gravel Substratum, by Kirkham; and Reference 8, Seepage Into Ditches in the Case of
a Plane Water Table And an Impervious Substratum, by Kirkham) for determination of
rate of seepage into drainage trenches. If sufficient capacity cannot be provided in

trenches, add surface drainage facilities.

4.5 PIPES FOR DRAINAGE BLANKETS AND FILTERS. Normally, perforated wall
pipes of metal or plastic or porous wall concrete pipes are used as collector pipes.
Circular perforations should generally not be larger than 3 inch. Filter material must be
graded according to the above guidelines. Pipes should be checked for strength.
Certain deep buried pipes may need a cradle. Check for corrosiveness of soil and
water; certain metal pipes may not be appropriate. Since soil migration may occur,
even in the best designed systems, install cleanout points so that the entire system can

be flushed and snaked.
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5. WELLPOINT SYSTEMS AND DEEP WELLS

5.1 METHODS. Excavation below groundwater in soils having a permeability greater
than 10° fpm generally requires dewatering to permit construction in the dry. For
materials with a permeability between 107 and 10 fpm, the amount of seepage may be
small but piezometric levels may need to be lowered in order to stabilize slopes or to
prevent softening of subgrades. Drawdown for intermediate depths is normally
accomplished by wellpoint systems or sumps. Deep drainage methods include deep
pumping wells, relief wells, and deep sheeted sumps. These are appropriate when
excavation exceeds a depth that can be dewatered efficiently by wellpoint systems

alone or when the principal source of seepage is from lower permeable strata.
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ORIGINAL GRADE
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FIGURE &
Intercepting Drains for Roadways on a Slope

Figure 8

Intercepting Drains for Roadways on a Slope
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5.1.1 CONSTRUCTION CONTROLS. For important construction dewatering, install
piezometers below the base of excavations and behind slopes or cofferdams to check

on the performance and adequacy of drainage system.

5.1.2 SETTLEMENT EFFECTS. Where dewatering lowers the water levels in

permeable strata adjacent to compressible soils, settlement may result.

5.2 WELLPOINT SYSTEMS. Wellpoints consist of 1-2 or 2-inch diameter pipes with a
perforated bottom section protected by screens. They are jetted or placed in a prepared

hole and connected by a header pipe to suction pumps.

5.2.1 APPLICABILITY. Wellpoints depend upon the water flowing by gravity to the
well screen. Pumping methods for gravity drainage generally are not effective when the
average effective grain size of a soil D4 is less than 0.05 mm. In varved or laminated
soils where silty fine sands are separated by clayey silts or clay, gravity drainage may
be effective even if the average material has as much as 50 percent smaller than 0.05
mm. Compressible, fine-grained materials containing an effective grain size less than
0.01 mm can be drained by providing a vacuum seal at the ground surface around the
wellpoint, utilizing atmospheric pressure as a consolidating force. See Section 4 for

limitations due to iron and carbonate clogging.

5.2.2 CAPACITY. Wellpoints ordinarily produce a drawdown between 15 and 18 feet
below the center of the header. For greater drawdown, install wellpoints in successive
tiers or stages as excavation proceeds. Discharge capacity is generally 15 to 30 gpm
per point. Points are spaced between 3 and 10 feet apart. In finely stratified or varved
materials, use minimum spacing of points and increase their effectiveness by placing

sand in the annular space surrounding the wellpoint.

5.2.3 ANALYSIS. Wellpoint spacing usually is so close that the seepage pattern is
essentially two dimensional. Analyze total flow and drawdown by flow net procedure.

© J. Paul Guyer 2013 33



For fine sands and coarser material, the quantity of water to be removed controls
wellpoint layout. For silty soils, the quantity pumped is relatively small and the number
and spacing of wellpoints will be influenced by the time available to accomplish the

necessary drawdown.

5.3 SUMPS. For construction convenience or to handle a large flow in pervious soils,
sumps can be excavated with soldier beam and horizontal wood lagging. Collected
seepage is removed with centrifugal pumps placed within the sump. Analyze drawdown
and flow quantities by approximating the sump with an equivalent circular well of large
diameter. Sheeted sumps are infrequently used. Unsheeted sumps are far more
common, and are used primarily in dewatering open shallow excavations in coarse

sands, clean gravels, and rock.

5.4 ELECTRO-OSMOSIS. This is a specialized procedure utilized in silts and clays

that are too fine-grained to be effectively drained by gravity or vacuum methods.

5.5 PUMPING WELLS. These wells are formed by drilling a hole of sufficient diameter
to accommodate a pipe column and filter, installing a well casing, and placing filter
material in the annular space surrounding the casing. Pumps may be either the turbine
type with a motor at the surface and pipe column with pump bowls hung inside the well,

or a submersible pump placed within the well casing.

5.5.1 APPLICATIONS. Deep pumping wells are used if (a) dewatering installations
must be kept outside the excavation area, (b) large quantities are to be pumped for the
full construction period, and (c) pumping must commence before excavation to obtain
the necessary time for drawdown. See Figure 10 (bottom panel, Reference 9, Analysis
of Groundwater Lowering Adjacent to Open Water, by Avery) for analysis of drawdown
and pumping quantities for single wells or a group of wells in a circular pattern. Deep
wells may be used for gravels to silty fine sands, and water bearing rocks. Bored
shallow wells with suction pumps can be used to replace wellpoints where pumping is

required for several months or in silty soils where correct filtering is critical.
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5.5.2 SPECIAL METHODS. Ejector or eductor pumps may be utilized within wellpoints
for lifts up to about 60 feet. The ejector pump has a nozzle arrangement at the bottom of
two small diameter riser pipes which remove water by the Venturi principle. They are
used in lieu of a multistage wellpoint system and if the large pumping capacity of deep
wells is not required. Their primary application is for sands, but with proper control they

can also be used in silty sands and sandy silts.

5.6 RELIEF WELLS. These wells are sand columns used to bleed water from
underlying strata containing artesian pressures, and to reduce uplift forces at critical
location. Relief wells may be tapped below ground by a collector system to reduce back

pressures acting in the well.

5.6.1 APPLICATIONS. Relief wells are frequently used as construction expedients,
and in situations where a horizontal drainage course may be inadequate for pressure
relief of deep foundations underlain by varved or stratified soils or soils whose

permeability increases with depth.

5.6.2 ANALYSIS. See Figure 11 for analysis of drawdown produced by line of relief
wells inboard of a long dike. To reduce uplift pressures h,, midway between the wells to
safe values, vary the well diameter, spacing, and penetration to obtain the best

combination.
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FIGURE 1!

Drainage of Artesian Layer by Line of Relief Wells

Figure 11

Drainage of Artesian Layer by Line of Relief Wells
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6. LININGS FOR RESERVOIRS AND POLLUTION CONTROL FACILITIES

6.1 PURPOSE. Linings are used to reduce water loss, to minimize seepage which can
cause instability in embankments, and to keep pollutants from migrating to groundwater
sources as in holding ponds at sewage treatment and chemical facilities, and in sanitary

landfills.

6.2 TYPES. Table 2 lists types of linings appropriate where wave forces are
insignificant. Where erosive forces are present, combine lining with slope protection

procedure.

6.3 SUBDRAINAGE. If the water level in the reservoir may fall below the surrounding
groundwater level, a permanent subdrainage system should be provided below the

lining.

6.4 INVESTIGATION FOR LINING. Check any potential lining for reaction to pollutants
(e.g., synthetic rubber is subject to attack by hydrocarbons), potential for insect attack
(e.g., certain synthetic fabrics may be subject to termite attack), and the potential for

borrowing animals breaching the lining.
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7. EROSION CONTROL

7.1 GENERAL. The design of erosion controls must consider the volume of runoff from

precipitation, the runoff velocity, and the amount of soil loss.

7.1.1 VOLUME OF RUNOFF. The volume of runoff depends on the amount of
precipitation, ground cover, and topography. For guidance on evaluating the volume of
runoff see Reference 12, Urban Hydrology for Small Watersheds, by the Soil
Conservation Service.

7.1.2 AMOUNT OF SOIL LOSS. Soil losses can be estimated using the Universal Soll

Loss Equation developed by the Soil Conservation Service:

A =El x (KLS)

where:

A = computed soil loss per acre, in tons
El = rainfall erosion index

K = soil erodibility factor

L = slope length factor

S = slope gradient factor

© J. Paul Guyer 2013 39



Method Applicability and Procedures

Buried Plastic Impervious liner formed of black colored polyvinyl chloride plastic film. Where

Liner foundation is rough or rocky, place a layer 2 to 4 inches thick of fine-grained soil
beneath liner. Seal liner sections by bonding with manufacturer's recommended
solvent with 6-inch overlap at joints. Protect liner by 6-inch min. cover of fine grained
soil. On slopes add a 6-inch layer of gravel and cobbles 3/4 to 3-inch size. Anchor liner
in a trench at top of slope. Avoid direct contact with sunlight during construction before
covering with fill and in completed installation. Usual thickness range of 20 to 45 mils
(.020" to 045"). Items to be specified include Tensile Strength (ASTM D412),
Elongation at Break (ASTM D412), Water Absorption (ASTM D471), Cold Bend (ASTM
D2136), Brittleness Temperature (ASTM D746), Ozone Resistance (ASTM D1149),
Heat Aging Tensile Strength and Elongation at Break (ASTM D412), Strength - Tear
and Grab (ASTM D751).

Buried Impervious liner formed by synthetic rubber, most often polyester reinforced.
Synthetic Preparation, sealing, protection, anchoring, sunlight, thickness, and ASTM standards
Rubber Liner are same as Buried Plastic Liner.

Bentonite Seal | Bentonite placed under water to seal leaks after reservoir filling. For placing under
water, bentonite may be poured as a powder or mixed as a slurry and placed into the
reservoir utilizing methods recommended by the manufacturer. Use at least 0.8 pounds
of bentonite for each square foot of area, with greater concentration at location of
suspected leaks. For sealing silty or sandy soils, bentonite should have no more than
10 percent larger than 0.05 mm; for gravelly and rocky materials, bentonite can have
as much as 40 percent larger than 0.05 mm. For sealing channels with flowing water or
large leaks, use mixture of 1/3 each of sodium bentonite, calcium bentonite, and
sawdust.

Earth Lining Lining generally 2 to 4 feet thick of soils having low permeability. Used on bottom and
sides of reservoir extending to slightly above operating water levels. Permeability of
soil should be no greater than about 2x10°® fpm for water supply linings and 2x10” fpm
for pollution control facility linings.

Thin Dispersant is utilized to minimize thickness of earth lining required by decreasing
Compacted Soil | permeability of the lining. Used where wave action is not liable to erode the lining.
Lining with Dispersant, such as sodium tetraphosphate, is spread on a 6-inch lift of clayey silt or
Chemical clayey sand. Typical rate of application is 0.05 Ibs/sf. Chemical and soil are mixed with
Dispersant a mechanical mixer and compacted by sheepsfoot roller. Using a suitable dispersant,

the thickness of compacted linings may be limited to about 1 foot; the permeability of
the compacted soil can be reduced to 1/10 of its original value.

Table 2

Impermeable Reservoir Linings

El, L, and S values should be obtained from local offices of the U.S. Soil Conservation
Service. K values may be determined from published data in a particular locality. In the
absence of such data, it may be roughly estimated from Figure 12 (after Reference 13,

Erosion Control on Highway Construction, by the Highway Research Board).
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7.2 INVESTIGATION. Where erosion can be expected during earthwork construction,
on-site investigations should include: (1) field identification and classification for both
agricultural textures and the Unified system, (2) sampling for grain size distribution,

Atterberg limits and laboratory classification, and (3) determination of in-place densities.

7.3 SURFACE EROSION CONTROL. For typical erosion control practices see Table
3, (modified from Reference 13). General considerations to reduce erosion include:

7.3.1 CONSTRUCTION SCHEDULING. Schedule construction to avoid seasons of
heavy rains. Winds are also seasonal, but are negligible in impact compared to water

erosion.

7.3.2 Soil Type. Avoid or minimize exposure of highly erodible soils. Sands easily
erode but are easy to trap. Clays are more erosion resistant, but once eroded, are more

difficult to trap.

7.3.3 SLOPE LENGTH AND STEEPNESS. Reduce slope lengths and steepness to

reduce velocities. Provide benches on slopes at maximum vertical intervals of 30 feet.

7.3.4 COVER. Cover quickly with vegetation, such as grass, shrubs and trees, or other
covers such as mulches. A straw mulch applied at 2 tons/acre may reduce soil losses
as much as 98% on gentle slopes. Other mulches include asphalt emulsion, paper
products, jute, cloth, straw, wood chips, sawdust, netting of various natural and man-

made fibers, and, in some cases, gravel.

7.3.5 SOIL SURFACE. Ridges perpendicular to flow and loose soil provide greater

infiltration.
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7.3.6 EXPOSED AREA. Minimize the area opened at any one time. Retain as much
natural vegetation as possible. Leave vegetation along perimeters to control erosion

and act as a sediment trap.

7.3.7 DIVERSION. Minimize flow over disturbed areas, such as by placing a berm at

the top of a disturbed slope.

7.3.8 SPRINKLING. Control dust by sprinkling of exposed areas.

7.3.9 SEDIMENT BASINS. Construct debris basins to trap debris and silt before it

enters streams.
7.4 CHANNEL LININGS. Table 4 presents guidelines for minimizing erosion of earth

channels and grass covered channels (modified after Reference 14, Minimizing Erosion

in Urbanizing Areas, by the Soil Conservation Service).
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Permissible Velocity (feet/sec)

Soil Type Bare Channel With Channel Vegetation
6” to 10”in height | 117 to 24” in height | Over 30” in height

Sand, silt, sandy 1.5 20t03.0 25t03.5 3.0t0 4.0
loam, silty loam

Silty clay loam, 2.0 3.0t04.0 3.5t04.5 40t05.0
silty clay

Clay 2.5 3.0t0 5.0 3.0t0 5.5 3.0t06.0

Table 4

Limiting Flow Velocities to Minimize Erosion

7.5 SEDIMENT CONTROL. Typical sediment control practices are included in Table 3.

7.5.1 TRAPS. Traps are small and temporary, usually created by excavating and/or

diking to a maximum height of five feet. Traps should be cleaned periodically.

7.5.2 PONDS.

7.5.2.1 SIZE THE OUTLET STRUCTURE to accept the design storm.

7.5.2.2 SIZE THE POND LENGTH, WIDTH AND DEPTH to remove the desired
percentage of sediment. See Figure 13 (modified after Reference 15, Trap Efficiency of

Reservoirs, by Brune). For design criteria see Reference 16, Reservoir Sedimentation,
by Gottschalk.

7.5.2.3 IF POND IS PERMANENT, compute volume of anticipated average annual
sedimentation by the Universal Soil Loss Equation. Multiply by the number of years
between pond cleaning and by a factor of safety. This equals minimum required volume
below water level. Dimensions of the pond can then be calculated based on the
available area. The design depth of the pond should be approximately three to five feet

greater than the calculated depth of sediment at the time of clearing.
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7.6 RIPRAP PROTECTION. Frequently coarse rock is placed on embankments where
erodible soils must be protected from fast currents and wave action. When coarse rock
is used, currents and waves may wash soil out from under the rock and lead to
undermining and failure. Soil loss under rock slopes can be prevented by the use of
filter fabrics or by the placement of a filter layer of intermediate sized material between
the soil and rock. In some cases soil loss can be prevented by the use of well-graded
rock containing suitable fines which work to the bottom during placement. For further
guidance see Reference 17, Tentative Design Procedure for Rip Rap Lined Channels,
by the Highway Research Board. For determining rock sizes and filter requirements

use Figure 14 (Reference 18, Design of Small Dams, by the Bureau of Reclamation).
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Figure 13
Capacity of Sediment Control Ponds
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Example Calculation

Annual soil loss in watershed = 0.9 acre-feet/year (from Universal Soil Loss Equation or other method, i.e.
design charts)

Desired pond efficiency = 70% or 0.63 acre-feet of sediment trapped each year.

Annual volume of runoff from watershed draining into proposed pond = 400 acre-feet/yr.
For 70% efficiency using median curve C/I = 0.032

Required pond capacity C = 0.032 x 400 = 12.8 acre-feet.

Assuming average depth of pond of 6 ft, required pond area about 2.1 acres. Pond should be cleaned
when capacity reduced 50%.

(Note: Trap efficiency decreases as volume of pond decreases; this has not been considered in the
example.)

Volume available for sediment = 50% x 12.8 = 6.4 acre-feet.

Years between cleaning = 6.4/0.63 = approximately 10 years

Figure 13 (continued)

Capacity of Sediment Control Ponds
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STONE DIAMETER -

h‘sft’;‘“a‘io‘v’-ﬁaazg.t.:fg.:ﬁ o @ ¢geé §.
o0 I

N TN IINT N
il VRN
é 6 RIPRAP \ LF,'L‘;TYEE’,‘,I A o ERANSL
F AR e
£ o] \
JIBE N AT
AN NIEAVENIRERIAEAN
AN NN NN N
NONU TR \ [

| |
IOE?O36432 ee6 43 2 086 43 2 86 43 2 186 43 2 0
GRAIN SIZE MILLIMETERS

£] MEDIUN ] FINE
BOULDERS | COBBLES MW AF” W SILT ORCLAY

GENERAL REQUIREMENTS : MAXIMUM AVERAGE MAXIMUM LAYER
. FOR EMBANKMENT SLOPES WAVE HEIGHT ROCK SIZE ROCK SIZE THICKNESS

BETWEEN 1:2 AND K4 FT. Dsg N, POUNDS N,

DUMPED RIPRAP SHALL 0101 8 100 2

MEET THE FOLLOWING | TO2 10 200 15

CRITERIA: 270 4 2 500 8

4T06 15 1500 24

E TOB 8 2500 X

8700 24 4000 3

2. RIPRAP SHALL BE WELL GRADED FROM A MAXIMUM SIZE AT LEAST 1.5 TIMES AVERAGE ROCK SIZE,
TO | . SPALLS SUITABLE TO FILL vOIDS BETWEEN ROCKS.

3. RIPRAP BLANKET SHALL EXTEND TO AT LEAST BFT, BELOW LOWEST LOW WATER,

4. UNDER THE MOST EXTREME ICING AND TEMPERATURE CHANGES, ROCK SHOULD MEET SOUNDNESS AND
DENSITY REQUIREMENTS FOR CONCRETE AGGREGATE. OTHERWISE , ANY UNWEATHERED ROCK WITH
G 2.60, OTHER THAN ARGILLACECUS TYPES,ARE SUITABLE.

5. FILTER SHALL BE PROVIDED BETWEEN MAXIMUM WAVE FILTER Dgs
RIPRAP AND EMBANKMENT SOILS TO HEIGHT, FT. SIZE AT LEAST:
MEET THE FOLLOWING CRITERIA: 0T 4 1 TO I-/2 IN.

4 TO 0 /2 TO 2IN

NO FILTER IS NEEDED |F EMBANKMENT MEETS
THE ABOVE REQUIREMENTS FOR Dgg SIZE.

FIGURE 14
Design Criteria for Riprap and Filter on Earth Embankments

Figure 14

Design Criteria for Riprap and Filter on Earth Embankments
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FILTER MAY NOT BE REQUIRED IF EMBANKMENT CONSISTS OF CH OR CL WITH LL) 30,
RESISTANT TO SURFACE EROSION. IF A FILTER IS USED IN THIS CASE IT ORDINARILY MEETS
FILTER CRITERIA AGAINST RIPRAP ONLY.

IF EMBANKMENT CONSISTS OF NONPLASTIC SOILS WHERE SEEPAGE WILL MOVE FROM
EMBANKMENT AT LOW WATER, 2 FILTER LAYERS MAY BE REQUIRED WHICH SHALL MEET
FILTER CRITERIA AGAINST BOTH EMBANKMENT AND RIPRAP. (EXAMPLE IS SHOWN ABOVE).

MINIMUM THICKNESS OF

MAXIMUM WAVE HEIGHT,

FILTER THICKNESS, INCHES

SINGLE LAYER FILTERS ARE FEET

AS FOLLOWS

DOUBLE FILTER LAYERS 0TO4 6
SHOULD BE AT LEAST 6 4TO8 9
INCHES THICK 8TO 12 12

Figure 14 (continued)

Design Criteria for Riprap and Filter on Earth Embankments
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