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LaPlace Transforms in Design and Analysis of Circuits© 
Part 4 

by Tom Bertenshaw 
 

Frequency and Phase Analysis 
 

Domain of "s" 
 

 
Suppose there is a quadratic in a transfer function denominator, such as: 

 
1362 ++ ss  

The roots of that expression are: 
 

23 js ±−=  
 

For reasons of stability, which will be explored in detail in subsequent modules, we will 
restrict the signs in the quadratic to be positive, i.e. the roots lie in quadrants II or III, 
meaning to the left of the ωj  axis or on the ωj  axis), i.e., ωj±0 ).  That is a general, 
and prudent design constraint.  A little thought about the behavior of  as a function 
of  provides the reason. 

)(tf
teσ

 
No matter how many iterations of finding the roots of a large quantity of quadratic 
equations where the roots are complex, we will consistently come to the conclusion that 
the domain of s is the entire complex plane, and specifically for our purposes 

ωσ js ±−=  is the general solution of a complex quadratic with roots to the left of the 
ωj  axis.   

 
σ  is a real number that is a function of the time constant, and ω  is the frequency of 
oscillation in rads/s (when 0≠σ  (or equal to 3 as in the example above), ω  is the 
damped frequency (or equal to 2 as in the example above); which is less than resonance: 

13 ).  The values of both ωσ &  arise from the values of the circuit components. 
 
Extending this argument, consider the core variable in any LaPlace transform: 
 

( ) tjttjst eeee ωσωσ mm −−− ==  
 

Since exponents are unitless, the units on both ωσ &  must be , and indeed they are.  
Question:  can you show this is true?  Ponder:  Do you see a shadow of relationship 
between a LaPlace transform and a Fourier transform from ? 

1−t

tjtee ωσ m−

 
The point of all this is that since the LaPlace transform can be written as a function of 

, we can legitimately develop a method for expressing the response of the tjtee ωσ −−
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transfer function as a function of frequency, and by extension, its phase at any given 
frequency. 
 
So far we have examined the case where the roots are complex.  For the real roots, 
usually the denominator of those expressions will be of the first order of the form: 

 
σ+s  

 
Repeated real roots are an exception and they are of an order: 
 

( )ms σ+   nm ,.........3,2=  
 
Repeated roots do not present the same degree of difficulty in frequency analysis as their 
inversion does when finding partial fraction expansions (PFE) for time domain analysis. 
Some excellent engineers that I have been associated with over the years will argue that 
exact repeated roots are not possible, so in the practical case they never have to be dealt 
with. The reasoning behind that is that no two time constants can ever contain 
components whose values are exactly the same to n decimal places, i.e., there will always 
be a slight amount of ambiguity in value, and the analyst can take advantage of that to use 
only non-repeated roots regardless of how close any n roots are to each other.  However, 
FAPP (For All Practical Purposes1) using n roots that are a virtual small value apart make 
no discernable difference in the output from n repeated identical roots. 
 
How to treat repeated roots when inverting into the time domain is another of those cases 
where you have to be aware that the method you choose may lead to ridiculous 
amplitudes.  For the sake of prudence, when we invert in this series of modules we will 
stick to identical roots and use the formal method of differentiation for PFE.  Choosing 
methods is not a consideration when dealing with frequency analysis as there is no need 
for PFE. 
 
In general, a transfer function will be a combination of first order, second order and any 
repeated root factors in both the numerator and the denominator: 
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++++++++
++++++++    ←Eq. 1 

 
Where  are the zeros of the function (causes the function to be zero), and  

 are the poles (like a telephone pole andcauses the function to spike).  It should 
be clear that if any roots are complex, a quadratic will appear, and all others will be first 
order roots or repeated roots that are real (repeated complex roots are also possible but 
we will leave that case to the future). 

xzs −=

xps −=

 

                                                 
1 John S. Bell, 1928-1990, Physicist extraordinaire 
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Obviously a frequency is a constituent of the complex case, but what about the other 
cases?  It can be shown that the units of a time constant (RC or L/R) is time.  It follows 
that the reciprocal of the time constant is frequency.  The frequency associated with the 
reciprocal of the time constant is called the "break frequency" for reasons that will be 
apparent shortly. 
 

The Transfer Function as a Logarithm 
 
For the purposes of analysis or design, if we consider the behavior of a transfer function 
as a function of ω  (or alternately, the reciprocal of RC or L/R) we will find that an 
accurate picture of amplitude versus frequency and phase versus frequency emerges. 
 
First a digression -- Recall that a decibel is defined as (  is power in watts)” xxP
 

in

out

P
Plog10  

which can be re-written as: 
 

in

out

in

out

in

out

V
V

V
V

P
P log20log10log10 2

2

==  

 
The above definition assumes that the input and output resistances are approximately 

equal ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈ 1

out

in

R
R , allowing the substitution of 

xx

xx

R
V 2

 for .  That is not an overly 

confining assumption in a passive network as it allows for maximum power transfer; a 
generally desirable design feature.  

xxP

 
Any transfer function in the LaPlace domain is the ratio of: 
 

)(
)(

sD
sN  

 
(see Eq. 1) and that ratio can certainly be constructed to express the relationship of  to 

.  We can re-write the transfer function as: 
outV

inV
 

)(log20)(log20log20 sDsN
V
V

in

out −=  

 
The Details 

 
Assume a transfer function of the form of: 
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σ+s
K  

 
Re-write that to obtain the form: 

 

⎟
⎠
⎞

⎜
⎝
⎛ +

σ

σ
s

K

1
 

 

Since the units of 
t
1

=σ , let σ  equal oω .  Then we substitute ωj  for s, and the transfer 

function now looks like: 
 

⎟⎟
⎠

⎞
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⎝

⎛
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o

j

K

ω
ω

ω

1

0  

 

Bear in mind that 
RCo
1

== ωσ  or 
R
L , so as a designer you always retain control over 

that value. 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

o

j
ω
ω1  is complex, so we will convert that to polar notation: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∠+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ −

ooo

j
ω
ω

ω
ω

ω
ω 1

2

2

tan11  

 
Taking the logarithm of both sides, the magnitude of the transfer function is: 
 

2

2

1log20log20log20log20
o

o
in

out K
V
V

ω
ωω +−−=  

 

The phase angle as a function of frequency is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

oω
ωarctan  (why minus arctan?  Because 

the expression is in the denominator and the phases of the constants are both zero.)  Phase 
angle is always taken to mean the phase of the output with respect to the input. 
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Lo-Pass Filter 
 
As an example, consider: 
 

10
10
+s

 

 
For purposes of illustration, the left hand side of transfer functions is omitted but 

understood to be 
in

out

V
V  for our present purposes.  Later on the left hand, parameters may 

change and if/when they do the change will be identified. 
 
Re-arranging: 
 

⎟
⎠
⎞

⎜
⎝
⎛∠+

→
+

→
+ −

10
tan

100
1

1

10
1

1

10
1

1

1
2 ωωωjs

 

 
Converting to decibels: 
 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−→

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

=
100

1log201log20

100
1

1log20)(
2

2

ω
ω

dbMagnitude  

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛−=
10

arctan0arctan)( ωωphase  

 
A single pole lo-pass filter passes frequencies below the break frequency relatively 
undiminished in magnitude and with relatively minor phase change.   
 
It may be helpful to connect the transfer function to a circuit to help visualize what is 
going on here. 
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In the above circuit assume  is taken across the capacitor and that . In that 
case then: 

outV 1.=RC

 

10
10
+

=
sV

V

in

out  

  
And by the process developed above: 
 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−→

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

=
100

1log201log20

100
1

1log20)(
2

2

ω
ω

dbMagnitude  

 

( ) ⎟
⎠
⎞

⎜
⎝
⎛−=
10

arctan0arctan)( ωωphase  

 

Recalling that 
C
jX C ω

−
= , the transfer function as a function of ω  from inspecting the 

circuit schematic is: 
 

( )jRC
j

C
jRC

j
V
V

in

out

−
−

=
⎟
⎠
⎞

⎜
⎝
⎛ −

−
=

ω
ω

ω
  ← circuit equation 

 
Then as a function of ω , both the magnitude in db and the phase start out as zero when 

0=ω , as verified by inspection of both the circuit equation and the magnitude and phase 
equations.  The phase ends at  as o90− ∞→ω , and the magnitude continues to decline 
by -20db per decade, again as verified by inspection of both equations.   
 
Briefly sketching the magnitude: when 10<<ω , the magnitude is  FAPPdb0 2; at 

10=ω , the magnitude is db32log20 −=− ; when 10>>ω , the magnitude for all 

practical purposes is ⎟
⎠
⎞

⎜
⎝
⎛−
10

log20 ω  (with a db20− .per decade slope, or "roll-off").  The 

"break frequency" is the frequency at which oωω = , i.e., the db3−  point. 
 

                                                 
2 For All Practical Purposes 
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Single Pole Sketch
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As plotted from the equation: 
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As can be seen from the above Bode3 (Bo-dee) plot, the output magnitude begins to roll 
off as ω  approaches the break frequency (in this case 10 rads/s).  At the break frequency 
the magnitude is at -3db and rolls off at -20db per decade.  Please note that this technique 
plots the output magnitude versus frequency, but does not address the frequency content 
of the output. That aspect of system response is left to Fourier analysis which is the 
subject of a different set of modules. 
 

                                                 
3  Named for H. W. Bode, 1905-1982, who developed the technique. 
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Single Pole Lo-Pass
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As expected, the phase of the output with respect to the input varies from 0 to -90o as a 
function of ω .  At very low frequencies the capacitor acts like an open and the input is 
the output.  At high frequencies the capacitor begins to act like a short, and by the voltage 
division rule an ever larger percentage of the input is dropped across the resistor, while 
the voltage that is dropped across the capacitor approaches the -90o rail.   
 
Both the magnitude and the phase plots are readily hand sketched for a rapid peek at the 
performance envelope.  For the magnitude sketch use the following "rule of thumb": 
 

a. Begin at the lowest frequency of interest, at the magnitude of that frequency. 
b. Draw a line horizontally to the first break frequency.  If the lowest frequency is 

also a break frequency, draw a line at a slope of db/decade per pole or 
zero (- for a pole, + for a zero). 

20m

c. From the break frequency to the next (or to the terminal frequency if there are 
no further break frequencies), draw -20db/decade per pole sloped lined or 

a+20db/decade per zero sloped line 
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+±

2

1log20
o

N
ω
ω  where N is the 

number of zeros or poles at that frequency. Remember that the addition of        
-20Ndb/decade with a +20Ndb/decade equals a horizontal line.  

d. Repeat step c until all break frequencies are accounted for. 
 

Examine both the sketched and the computed plot below.  The greatest error occurs at the 
break frequency of 10 rads/s; the computed magnitude is -3db from the magnitude sketch.  
That is easy to remember; your error is max at the break frequency and it is  per 
pole or zero at that frequency. 

db3m
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Single Pole Sketch
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Computed Single Pole Lo-Pass
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Rule of thumb for sketching the phase plot is: 

a. Since 1tan 1 =−

oω
ω  when oωω =  assign +N45o  to a zero break frequency and a       

-N45o to a pole break frequency; N being the number of poles or zeros at that 
break frequency. 

b. One decade back from any break frequency, assign the phase to 0 for a pole or 
zero. 

c. One decade above the break frequency, assign the phase to be +N90o for a zero 
or -N90o for a pole.  

d. Connect the dots.  At points of ambiguity (for example a frequency that is one 
decade above a pole oω  while simultaneously being one decade back from a 
zero oω ), it is best to compute the value.  Phase plots can be very tricky to 
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sketch, so calculation where ambiguity exists is recommended.  But it is clear 
that in the above stated case, as ∞→ω  the sum will be zero degrees. 

 

Single Pole Phase Sketch
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Sketching the magnitude and phase plots was particularly useful and time conserving 
back in the slide rule days.  However, using graphing calculators and laptops performing 
a calculated plot is almost as fast, while being far more accurate.  The graphs in this 
module were made using MS Excel®.  It remains a matter of personal choice whether 
you prefer a sketch or a calculated plot.  Calculated plots are required where accuracy is 
an issue. 
 
The simple counterpart to the single pole lo-pass is the single pole hi-pass. 

 

 

 
The general transfer function for this filter is: 
 

⎟
⎠
⎞

⎜
⎝
⎛ +

=
⎟
⎠
⎞

⎜
⎝
⎛ +

RC
s

s

sC
R

R
11
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Re-arranging into a format suitable for Bode analysis by substituting ωj  for s and oω  for 

RC
1 : 

( )
oo

o

o

o

o

o j

j

j
j

ω
ω

ω
ω
ω
ω

ω
ω

ω
ω

ωω
ω

1
2

2

tan1

90

1 −∠+

∠
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
+

 

 
Converting to decibel format: 
 

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

2

1log20log20log20
ooInput

Output
ω
ω

ω
ω  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

o

oPhase
ω
ω1tan90  

 
Using the same break frequency as the single pole lo-pass: 
 

100
1log20

10
log20

2ωω
+−⎟

⎠
⎞

⎜
⎝
⎛=Magnitude  

 

⎟
⎠
⎞

⎜
⎝
⎛−=
10

arctan90 ωPhase  

 
Plotting these: 
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The roll-on is an expected +20db/decade and the characteristic -3b magnitude at the 
break frequency is evident.  While this circuit illustrates the basic performance of this 
class of filters, like the single pole lo-pass, the magnitude change per decade is lack 
luster. In both cases repeated poles at the break frequency are needed to attain useful 
performance.   
 

Single Pole Hi Pass
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The phase shift pattern mirrors the single pole lo-pass in profile, but the limits are 
reversed as indicated by both the plotting equation and the schematic.  We should expect 
the drop across the resistor to be 90o out of phase at frequencies well below break, and to 
asymptotically approach zero as ∞→ω . 
 

Multiple Poles 
Lo-Pass 

 
Let us consider the double pole transfer function with a break frequency of 10 rads/s. 
(Remember, for all practical purposes the poles need not be exactly superimposed, 
merely close enough so that treating them as exact has no appreciable effect on the 
outcome prediction). 
 

2)10(
100
+

=
sInput

Output  

 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−= 2

2

10
1log40)1log(20 ωωMagnitude  

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−= −−−

10
tan

10
tan)0(tan)( 111 ωωωPhase  

 
Note the differences between this example and that of the single pole; the roll-off is twice 
as steep and the phase difference at any frequency is doubled. 
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Double Pole
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Also notice that at the break frequency the magnitude is down by -6db, i.e., -3db for each 
pole. 
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Double Pole Hi-Pass 
 
Consider the double pole hi-pass transfer function: 
 

2)(
)(

os
sN
ω+

 

 
In plotting format: 

13



⎟⎟
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

2

1log40)(log20log20
o

sN
Input

Output
ω
ω  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

o

sNPhase
ω
ωarctan*2)(arctan  

 
As an example: 
 

( )2
2

10+s
s  

 
Then the plotting equations are: 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+−⎟

⎠
⎞

⎜
⎝
⎛=

2

10
1log40

10
log40 ωωMagnitude  

 

⎟
⎠
⎞

⎜
⎝
⎛−= −

10
tan*2180 1 ωPhase  
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Since the definition of bandwidth (see discussion below) anchors on the -3db points, 
notice that it has shifted from the break frequency of 10rads/s to about 20 rads/s.  As we 
shall see in subsequent examples, this shifting serves to tighten up or narrow the 
bandwidth in filters designed for bandpass selection. 
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Double Pole Phase
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Notice that at the break frequency the phase shift is 2*45o.   
 
There are design considerations in multiple pole filters that are not apparent in the 
transfer function.  The practical reality of converting a transfer function into a physical 
circuit is not a straight forward one for one conversion from a LaPlace expression into a 
schematic.  Techniques to accomplish that process are deferred until later modules. Some 
knowledge of active circuits will ease the transition from transfer function to schematic. 
Discussions of active circuits and LaPlace transforms are the focus of Module 5. 
 
Next, consider an example of a double pole function with differing break frequencies: 
 

( )( )
⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ +

=
++

=

100
`1

10
1

1
10010

1000
ssssInput

Output  

 
Forming the necessary equations for plotting: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−= 2

2

2

2

100
1log20

10
1log20)1log(20 ωωMagnitude  

⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−= −−−

100
tan

10
tan)0(tan 111 ωωPhase  
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Magnitude(ω)
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As expected, the roll-off between 10 and 100 rads/s s is -20db per decade, whereas the 
roll-off between 100 and 1,000 rads/s is -40db per decade.  The pattern is that each pole 
contributes a -20db per decade roll-off beginning at its break frequency. If a -100db per 
decade roll-off is needed, then you will need a 5 pole filter. -Ndb per decade requires 
N/20 poles.  While easy to understand, it is not as easy to implement; more on that topic 
in a later module. 
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Phase(ω)
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Another pattern that is evident is that each pole contributes a -90o phase shift at the 
output.  N poles = N*(-90o) shifts.  That fact allows you to predict the terminal phase 
shift as ∞→ω . 

 
Bandwidth and Half-Power Points 

 
Notice that the magnitude is -3db at the break frequency ( oωω = ).  -3db is known as the 
half-power point since 10Log(.5) = -3.  Filter bandwidth is usually defined as the range of 
frequencies between half-power points.  In notch and bandpass filters, there will be a pair 
of half-power points; one for roll-on and one for roll-off.  In the case of the lo-pass filter 
as above, there is only one half-power point.  More will be mentioned of this topic later 
in the module.  
 

Adding Zeros to the Transfer Function 
 

Suppose there exists a transfer function such as: 
 

)(
)(

β
α

+
+

s
sK  

 
Using the procedures we have already developed, the expressions necessary to plot 
magnitude vs. frequency and phase shift vs. frequency are: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++= 2

2

2

2

1log201log20)log(20
β
ω

α
ωKMagnitude  
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛+= −−−

β
ω

α
ω 111 tantan)0(tanPhase  

 
For example: 
 

⎟
⎠
⎞

⎜
⎝
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Plotting these: 
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From the expression that the magnitude versus frequency plot is constructed, we should 
expect a -20db roll-off beginning at 10 rads/s and a +20db roll-on at 100 rads/s.   
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From the above graph those two effects can be seen.  Since the +20db term cancels the -
20db term beginning at 100 rad break frequency, the magnitude of the output with respect 
to the input remains constant beyond about 500 rads/s.  The net effect of the zero is to 
cancel the effect of the pole at the zero's break frequency.  This effect is very useful in 
designing and constructing bandpass and notch filters. 
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The above case illustrates the problems in determining the frequency at which changes 
occur if sketching a phase plot (try sketching it and predicting the phase between 10 and 
1000 rads/s). The calculated plot is easy to construct and very accurate. It was simple to 
predict that the terminal phase change would sum to zero as ∞→ω , since -90o+90o=0.  
Since the two break frequencies are 10 rads/s and 100 rads/s we should expect maximum 

phase changes ⎟
⎠
⎞

⎜
⎝
⎛
ω
φ

d
d  to occur within that range of frequencies. From the plot it is seen 

that there is indeed a minimum accompanied by an expected sign change. 
 
Below is my attempt to sketch the phase. As can be seen, it has a general resemblance to 
the computed plot but lacks a great deal in accuracy. My preference is to rely on 
computed plots while visualizing the sketch for a first look. 
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Two Unequal Poles Phase Sketch
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Multiple Poles, Multiple Zeros 
 
Next, consider the two zero-two pole bandpass filter whose general transfer function is: 
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In order to serve as a bandpass, εϕβα <<< .  As an example (frequencies chosen for 
illustration convenience): 
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Performing the necessary substitution: 
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The plotting equations are: 
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Plotting these: 
 

Simple Bandpass
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Above is the calculated plot, and below is the estimated or sketched plot.  While the 
general form of the sketch conforms to the general locus of the calculated plot, it misses 
the point on the maximum magnitude and the 3db points.  The bandpass of the above is 
about 85 to 1,020 rads/s.  The bandpass below is about 70 to 1,060 rads/s. 
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Simple Bandpass Phase
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To illustrate the effect of multiples at the zeros and poles, let us modify the above filter to 
be a third order. The plotting equations are then: 
 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛++⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+=

2

3

2

2

2

4

2

10
1log

10
1log

10
1log

10
1log60. ωωωωMag

 

⎟
⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛= −−−−

3
1

2
1

4
11

10
tan

10
tan

10
tan

10
tan3 ωωωωPhase  

Plotting these: 
 

Third Order Bandpass
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Other than the change in magnitude, the most significant observation is that the bandpass 
went from 85-1,050 rads/s for the first order filter to approximately 150-700 rads/s; a 
tightening up of the bandwidth.  The third order filter has about 57% of the bandwidth of 
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the first order filter. We can tentatively conclude that increasing the order of a filter, 
decreases its bandwidth; thereby, increasing its selectivity. 
 

Third Order Bandpass Phase (Degrees)
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The pattern of the third order is identical to the first order with the exception that the Y 
axis values have been multiplied by 3. The third order has a db60±  per decade change in 
magnitude and a total potential phase change of  (why does the computed plot fall 
well short of that value?  What effect does the spacing of the break frequencies have on 
peak-to-peak phase excursion?).  It is fairly easy to change the order of a filter in the 
model while the circuit is often a different matter. This will be addressed in subsequent 
modules. 

o270±

 
To create a notch filter, interchange the break frequency poles and zeros. For example: 
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Plotting these: 
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Simple Notch Filter
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Simple Notch Phase
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Break frequency Spacing and Bandwidth 

 
The effect of decreasing the spacing between the break frequencies will decrease the 
bandwidth, but the slope of  db/decade per pole/zero remains unchanged. As a 
consequence, peak magnitude is correspondingly decreased.  For example: 
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The plotting equations are: 
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These equations plot to: 
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The bandwidth has been decreased to approximately 4-119 rads/s.  Increasing the order of 
the transfer function to 3, produces: 
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This decreases the bandwidth to about 45 rads/s. The gain is both magnitude and 
selectivity. 
 

The Complex Quadratic Pole 
 
Consider a transfer function such as: 
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b &  are such that the roots are complex. Let us change the notation to 

something more convenient to our purposes;  let 02ζω=
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In order to remain complex, restrict 10 <≤ ζ .   
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As an example, set  and 1)(' =sN 1=oω .  Since the salient effect occurs as a function of 
ζ  (zeta), plots will be made for a few different values of .ζ  
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Use the above when the denominator is positive. Remember at oω  the phase is -90o; 
thereby, avoiding division by zero. 
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Use the above when the denominator is negative. 
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We still get the -40 db/decade roll-off, but the response of the system about the break 
frequency varies significantly as a function of zeta.  When zeta=.01, there exists an 
extremely narrow selectivity bandwidth about the break frequency. When zeta=.01, the 
time constant, in this case, equals 100s and the system impulse response dies out at 600s.  
When 1=ζ , the system is just a 2nd order repeated real pole filter at a break frequency of 
1. 
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When the resonant frequency is changed, all that changes in the pattern is the frequency 
that the peaks occur at in the magnitude plot, and the frequency that holds the -90o spot in 
the phase plot. 
 
For example: 
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Since we have used the notation , and since we restrict this notation to 
those cases wherein the roots are complex, it is legitimate to ask about the relationship 
between the resonant frequency (

22 2 ooss ωζω ++

oω ) and the damped frequency ( dω ) as a function of ζ  
(we will label ζ  the damping coefficient from here on out to the end of the series of 
modules).  Clearly when 0=ζ , the equation becomes  and the roots are 22

os ω+ ojω± ; 
that is the resonant frequency and the frequency of oscillation.  However, when 

10 << ζ , then the roots of the equation are ( )22
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To verify, let a denominator be . The roots are 1342 ++ ss 32 js ±−= , 13=oω , 
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