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LaPlace Transforms in Design and Analysis of Circuits© 
Part 3 

by Tom Bertenshaw 
 

Basic Circuit Analysis - Parallel Circuits 
 

Simple Two Loop 
 

 
In Part 2, LaPlace techniques were used to solve for the output in simple series reactive 
circuits.  This part will examine the techniques used in approaching the solution to two 
and three loop parallel circuits with reactive components.  Parallel circuits that contain a 
number of loops beyond three will not be exampled, as any number of loops can be 
reduced to two or three by the use of Thevinan's or Norton's theorem, or by merely 
extending the procedures developed here (although the math housekeeping gets intense).   
 
Consider the following two loop system:   
 

Z1

Z2

Z3

Z4

i1 i2

Vin Vout

 
 
Writing the circuit equation for each loop; reveals that there are two equations in two 
unknowns that characterize the circuit. 
 

22121 )( izizzVin −+=  
   ( ) 2432120 izzziz +++−=
 
There are several techniques available for solving systems of linear equations that have 
the same number of equations as unknowns, and of those, we will use Cramer's Rule 
throughout this section (If you want a quick refresher on the use of Cramer's Rule for 
solving systems of linear equations, see Appendix A).  Suppose we have the following 
values for  through  1z 4z
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i1 i2

Vout1f .5f

10 5

 
Circuit 1 

Writing the equations for the two loops; 
 

( )∫ −+= dtiiiVin 21110  

   tdiidti∫ ∫++−= 221 350
 
Question:  How was the factor ∫ dti23  developed?   

Since the defining equation for capacitor behavior is 
dt

dv
Ci c

c = , it follows that 

∫= dti
C

v cc
1 . 

 
We can probably reduce the labor (and anguish) if the above two circuit equations are 
converted to their LaPlace transforms.  Looking at the transformed circuit; 
 

i1 i2

Vout

10 5

1/s
2/s

 
 
the circuit equations are re-written as; 
 

)(1)(110)( 21 si
s

si
s

sVin −⎟
⎠
⎞

⎜
⎝
⎛ +=  

      )(35)(10 21 si
s

si
s

⎟
⎠
⎞

⎜
⎝
⎛ ++−=  
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Re-writing these equations as matrices; 
 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ +−

−⎟
⎠
⎞

⎜
⎝
⎛ +

0
)(

)(
)(

351

1110

2

1 sV
si
si

ss

ss in  

 
First, find the determinant. 
 

( )
2

2

2

2

2

04.7.5023550135110.
s

ss
s

ss
sss

Det ++
=

+
=−⎟

⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ +=  

 
The task is to find  as a function of the driver, and in this case let outV ssisVout

2)()( 2=  

(output taken across rightmost capacitor).   
 
However, first we'll find the impulse response to gain an idea of the form of the transient 
response of the circuit.  Because  is the only current involved in finding  we 
need not solve for , except to satisfy curiosity.  Solving for ; 

)(2 si )(sV out

)(1 si )(2 si
 

( )04.7.50.

01

1110

2 ++
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

⎟
⎠
⎞

⎜
⎝
⎛ +

ss
s

Det
s

s

 

 
and the output voltage response to a current impulse is 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

+
+

+
−

≈⎟
⎠
⎞

⎜
⎝
⎛⎟
⎠

⎞
⎜
⎝

⎛
++

=
063.

1
637.
107.2

04.7.50
)( 2 sssss

ssVout  

 
in turn then 
 

( )tt
out eetV 637.063.07.)( −− −≈       Ex. 1 ←

 
Indicating that the transient response, for all practical purposes, is zero at  seconds 
(recall that in previous modules  was defined to be about zero). 

95≈t
6−e
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Eq. 1
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Suppose that a driver of  is applied as .  (Often parameters are chosen, in 
this case the frequency, to exaggerate some aspect of the response for illustration 
purposes.) 

)1sin(.1 t )(tVin

 
Then  equals )(2 si
 

( ) ( )2222

2
2

22

1.)04.7.(
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Since ⎟
⎠
⎞

⎜
⎝
⎛=

s
sisVout

2)()( 2 , then 

 

( )( ) 2222 1.
66525.

637.
017.

063.
5.

01.04.7.
004.)(

+
−∠

+
+

−
+

≈
+++

≈
ssssss

sV
o

out  

 
(if you need a refresher on Partial Fraction Expansion, particularly with respect to finding 
factors on complex denominators, refer to LaPlace Transforms in Design and Analysis of 
Circuits© Part 2) 
 
and finally 
 

)661sin(.525.017.5.)( 637.063. ott
out teetV −+−= −−       ←  Ex. 2 
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Eq. 2 
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Again, please note that the output contains two distinct components: the transient 
response and the steady state response. The transient response is the time limited 
contribution of the "native" or impulse response (amplitude modified by the nature of the 
driver).  The steady state response has the characteristics of the driver and continues until 
the drive is removed.  All responses will contain these two components. 
 

The RLC 
 
Another, and very significant, circuit is the analog of the series RLC network; as 
expected it is a parallel RLC network; often known as a "parallel tank" circuit.  Its 
properties are such that it presents a very high impedance at the resonant frequency 
rendering the circuit very useful in filtering and frequency determination applications.  
Like other classic circuits this one can also be implemented using active components.  
However it is an understanding of the response that is sought at this time and not the 
techniques involved in mimicking reactive components with active components.  Those 
design techniques will be developed in subsequent modules within this series. 
 

Vout
It I1 I21/sC

sL

R

 
Circuit 2 

                                                              21 iiit +=       
by inspection, 
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RsL
V

i

sCVi

out

c

+
=

=

2

1

 

Since , we can take advantage of that and write the circuit equation as  outc VV =
 

outt V
RsL

sCi ⎟
⎠
⎞

⎜
⎝
⎛

+
+=

1  

or 

⎟
⎠
⎞

⎜
⎝
⎛ ++

+
=

++
+

=

LC
s

L
RsLC

RsL
sCRLCs

RsL
i

V

t

out

11 2
2   

 
Suppose the following circuits exists, and that we wish to know its impulse response.  
(See Appendix C for a simple but relatively effective current driver) 
 

                        

Vout
It I1 I2

.1s

1

1/.001s

 
 
Putting some flesh to the transfer function 
 

( )
( ) ( )

( )( )
( ) 2222222 87.995

07.5087.99
87.995
)5(1000

87.995
551000

1000010
)11(.10000)(

++
+

++
+

=
++

++
≈

++
+

=
ss

s
s

s
ss

ssVout  

 
)8787.99sin(1001)87.99sin(07.50)87.99cos(1000)( 555 ottt

out tetetetV +≈+≈ −−− ←Ex 3 
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Ex. 3
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The tank exhibits a characteristic "ringing" that deteriorates over time in accordance with 
the system time constant.  Task:  identify the two components that determine the time 
constant; what is the theoretical result of a 0 ohm resistor?  Question:  is 0 ohm's possible 
under normal ambient conditions?   
 
It is worth noting the magnitude of the output in response to )(tδ .  Parallel tanks 
generate considerable voltage at or very near their resonant frequency and, as a designer, 
one must always bear in mind the consequences to the remaining circuitry.  It is a 
question of  the physics of an inductor:  Assume a total circuit current )sin( tAi Zt ω=  

where the magnitude of  is a function of total circuit impedance ZA ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= t

total

in i
Z
V .  At 

resonance, , and we also know that 0=− CL jXjX
dt
diLVL = ; why is  so large? LV

 
Suppose this circuit is driven by )110sin(10 tit = , then 
 

( )( )
( ) 2222222 110

)68465)(110(
87.995

11246487.99
)110)(1000010(

)11)(.1100(10000)(
+

−∠
+

++
∠

≈
+++
+

=
sssss

ssV
oo

out  

 
)68110sin(465)11287.99sin(464)( 5 oot

out ttetV −++≈ −   ←  Eq. 4 
 
It would probably be prudent to reduce the total current input to .1 instead of a driving 
amplitude of 10. 
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Eq. 4
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Bear in mind, from above, that )( Lji
dt
diLV LL ω== , meaning that the magnitude of  is 

directly proportional to the magnitudes of both 

LV

ω&Li .  The gross effect is that 
considerable voltage can be built across an inductor, which may present a hazard to the 
remaining circuitry.  Of course there are techniques to control and/or limit the 
magnitudes, but that discussion is for a later time. 
 
As an aside, and as a general comment: while considerable effort is maintained to 
monitor the correctness of all the calculations, oft times what can go wrong will go 
wrong.  Therefore, if you discover an error, please do not hesitate to contact the company 
and/or the author. 
 

Three Loop Circuit 
 
Consider the following circuit 
 

Z1

Z2

Z3

Z4

i1 i2
Vin

Z6

Z5

i3

 
Circuit 3 
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Writing the loop equations 
 

322121 0)( iizizzVin +−+=  
    34243212 )(0 izizzziz −+++−=
    3654241 )(00 izzzizi +++−=
 
Writing the system equations in matrix notation 
 
( )

( )
( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−
−++−

−+

0
0

0

0

3

2

1

6544

44322

221 inV

i
i
i

zzzz
zzzzz

zzz
 

 
Writing the determinant using the either the example or the definition contained in 
Appendix A 
 

( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( ) ( )( )654

2
2

2
421432

424265443221

00

00.

zzzzzzzzzz

zzzzzzzzzzzzDet

++−+−++−

−−+−−++++++=
 

 

642542632532

432641541631531431621521421

zzzzzzzzzzzz

zzzzzzzzzzzzzzzzzzzzzzzzzzzDet
z +++

+++++++++=
 

 
Solving for  through  1i 3i
 

( )
( ) ( )( ) ( )

.
0000

.
0
0

0

2
46544326544

4432

2

1 Det
zVzzzzzzV

Det
zzzz

zzzz
zV

i inin

in

−−−++++++
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−
−++

−

=

 

⎟
⎠
⎞

⎜
⎝
⎛ +++++++

=
.

6454635343625242
1 Det

zzzzzzzzzzzzzzzzVi in  

 
( )

( ) ( )
.

00000
.

00
0

0

6542654

42

21

2 Det
zzzzV

Det
zzz

zz
Vzz

i in

in

+++−−++
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
−−

+

=  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++
=

.
625242

2 Det
zzzzzzVi in  
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( )
( )

.
00000

.
00
0

424

4322

221

3 Det
zzV

Det
z

zzzz
Vzzz

i in

in

−−−++
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
++−

−+

=  

 

⎟
⎠
⎞

⎜
⎝
⎛=

.
42

3 Det
zzVi in  

 
Three by three matrices get messy when there are reactive components in the circuit, and 
even messier at greater dimensions.  But as long as the fundamentals of the matrix 
solution process are understood, it is recommended that you resort to the use of a 
computer or calculator for solutions to systems greater than 3X3.  Naturally, those aides 
are not essential, merely convenient. 
 
For practice, consider the following circuit 
 

i1 i2
Vin

i3

5 5 1

1/s 2/s

2s

 
 
The determinant matrix is 
 

⎟
⎠
⎞

⎜
⎝
⎛ ++⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛ +−−++⎟

⎠
⎞

⎜
⎝
⎛ ++⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛ +

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ ++−

−⎟
⎠
⎞

⎜
⎝
⎛ +−

−⎟
⎠
⎞

⎜
⎝
⎛ +

s
s

ssss
s

ss

s
s

s

sss

ss

22114150002213515

22120

2351

0115

22

 

 
collecting terms and factoring (courtesy of trusty HP49 - I cannot be sure, but I would 
guess the internal routines use the Newton-Raphson (or variant thereof) method of 
finding the roots). 
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( ) ( )( )
2

22

2

23 958.455.391.5022746550.
s

ss
s

sssDet +++
=

+++
=  

 
Assume that  is taken across the inductor, in that case  outV
 

sLsiVout )(3=  
 

.

020

0351

)(115

)(3 Det
s

ss

sV
ss

si

in

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎟
⎠
⎞

⎜
⎝
⎛ +−

−⎟
⎠
⎞

⎜
⎝
⎛ +

=  

 

( ) ( )( )223 958.455.391.50
2

)(
+++

=
ss

V
si in  

 
and 
 

( ) ( )( ) ( ) ( )( )2222 958.455.391.
08.

958.455.391.50
4

+++
=

+++
=

ss
sV

ss
sV

V inin
out  

 

391.
034.

958.)455.(
6.21)958.*0923(.
22 +

−
++
∠

≈
ssV

V o

in

out  

 
The impulse response is  
 

tot etetf 391.455. 034.)6.21958sin(.0923.)( −− −+=       ←   Eq. 4 
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Eq. 4
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Suppose the circuit is driven at a frequency near resonance 
 

1
10
2 +

=
s

Vin  

- 
then  
 

( ) ( )( )( )1958.455.391.
8.

222 ++++
=

sss
sVout  

 

+
++
∠

+
+
−

≈ 22 958.)455.(
2.93958.*004.1

391.
294.

ss
V

o

out 1
6181.

2 +
−∠

s

o

 

 
toto

out etettV 391.455. 294.)2.93958sin(.004.1)61sin(81.)( −− −++−≈   ←  Eq. 5 
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Eq. 5
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A Very Good Tank Circuit 
or 

The Strange Case of a Pulsed Driver 
 
Suppose we wish to build a high quality tank circuit for frequency determining purposes, 
and further suppose that frequency is 1 megahertz (6.28 megarads/s).  We know that 

LCj 1±  is the resonant frequency (in rads/s) when 0=R  (an impossible condition in 

practical reality, but frequently used for pedagogical or rough estimation purposes) and 

that the frequency of oscillation (in rads/s) is ( )22
1

L
R

LCj −±  when  (see 

appendices D & E).   

0≠R

 
Further suppose we build the circuit as a parallel tank with no physical resistor in the 
circuit.  We will model it as if the DC resistivity of the inductor and component leads is 
small; on the order of  ohms. Some design considerations will surface.  In addition 
the drive will be a repetitious pulse (the analysis of the response will require some 
thought to reconcile the math to reality).  

110−

 
A drive of the nature described above possesses a spectrum of frequencies, however for 
illustrative purposes we will ignore the harmonic content at present. The development of 
the spectrum is a subject for Fourier analysis; we will hold that effort in abeyance for the 
purposes of this module.  Just bear in mind that the actual output will contain a range of 
frequencies the majority of which will be attenuated by the filtering properties of the 
tank.   
 
Choosing the lumped value of .1 ohms of lead resistance and .2 ohms of DC inductor 
resistance, and further letting 10=C pf; then 533.2≈L mh,  verify that this combination 
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yields an 6280000≈oω  rads/s and that CL XX ≈ .  Question:  what happens to the 
resonant frequency if the capacitor and the inductor values vary by %10±  in production?  
Does this condition present an envelope of frequencies?  How could this be rectified to 
meet a spec of %16280000 ±=oω ? 
 

 
                              
The above circuit has two loop currents which we will call ; and since LC ii &
 

LCt iii +=  
 

⎟
⎠
⎞

⎜
⎝
⎛

+
+= −

s
sVi outt 002533.3.

110 11  

 

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

++
=

−−

)96.78(002533.
110310533.2 12214

s
sXsXVi outt ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

++−

)96.78(
1095.379(10 13211

s
Xss  

 

)1095.379(
)79(10

132

11

Xss
s

i
V

t

out

++
+

≈ 262

66

262

11

)1028.6()5.39(
)1028.6)(1028.6(

)1028.6()5.39(
)5.39(10

Xs
XX

Xs
s

++
+

++
+

≈  

 
Finding the impulse response 

 
)99.891028.6sin(101)( 65.3911 ot

out tXeXtV +≈ −  
 
Obviously a magnitude of  volts is unsupportable in a small signal circuit.  Like a 
1910 transmitter there would be "arcs and sparks".  There is nothing wrong with the 
math; the improbable result is a function of a practical impossibility. 

1110

 
)(tδ  is an intellectual construct suitable for instructional purposes. A practical 

approximation of )(tδ  is a finite amplitude pulse of a few nano seconds duration, that 
also possesses some finite rise and fall time.  While the impulse response shown above 
yields a "peek under the tent" it does not yield an undistorted mirror of amplitude reality. 
 

 
14 



Version of:  13 Aug. 2011; Revised 10 Oct. 2011 

The transfer function is, as already developed 
 

)1()1( 22

LC
s

L
RsC

L
Rs

LC
s

L
RsLC

RsL
i

V

t

out

++

+
=

++

+
=  

 
re-arranging 
 

tout i

LC
s

L
RsC

L
Rs

V
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

++

+
=

)1( 2
 

 
If we ignore the rise and fall times, and model , where  is of a 
few nano seconds duration and  is the amplitude, we get much closer to a practical 
result.  We get even closer if the rise and fall times are included.  The entire expression 
for such a driver might be 

))()((1 atutukit −−= a

1k

 
( ){ })()(()(2 εχβ −+−−−−= ttuttuttuttukit  

 
 
Where εχβ <<  and a=− βχ , all on the order of a few nano seconds.  The constant 

 modifies the slope of . 2k t
 

        

k2t

a

-k2t

 
 
There are trade-offs in either scenario in the form of an unwanted frequency spectrum.  
and also perhaps in the form of more filtering by adding an additional tank or tanks.  
Adding additional tanks is not necessarily undesirable, as that narrows the bandwidth and 
provides increased selectivity (another topic for a later discussion, but not in this 

 
15 



Version of:  13 Aug. 2011; Revised 10 Oct. 2011 

module).  As always in reality we deal in trade-offs and look for the best compromise.  
One of the trade-offs is that even though the above model might more accurately reflect 
the actual driving pulse, it's mathematical implementation fails to reflect the reality of the 
output.  For the sake of modeling and illustration and simplicity the following is an 
example worked for a driver consisting of a step of 1mA @ 10nsec duration.  . 
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Rss
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When transient response is the issue we should work only with the first expression to the 
right of the equals sign as the second will be a mirror image, albeit with a sign change 
and a time offset.  That's the rub, it serves to cancel the output quite possibly before the 
circuit has had time to settle.  The reasons for that is that the math model fails to follow 
reality in this case.  Essentially we are treating a )(tδ  as a finite amplitude pulse with 
finite duration to limit the predicted output amplitude to the neighborhood of reality.  The 
above model predicts an output stop coincident with a driver stop, as the driver is 
modeled as a step.  So, knowing that the tank will continue to oscillate until exhausted by 
the time constant rule of 6 (transient response), treat the driver as a mathematical impulse 
and ignore the driver duration WHEN it is much shorter than 6 time constants.  Of course 
if the duration of the driver is greater than 6 time constants then model it as we did above.  
When the driver a time of existence much smaller than 6 time constants the LaPlace 
transform method does not handle that as well as other methods. 
 
Why bother with modeling the driver as a short duration step at all?  The physics of a 
tank are such that when current flow is initiated, it creates a back and forth transfer of 
charge between the inductor and the capacitor, much like the swing of a pendulum.  
Initially both the inductor and capacitor are uncharged.  When current flow is initiated, 
the inductor resists the change, but the capacitor charges.  Eventually the rate of change 
of charge in the capacitor diminishes as the inductor begins to charge.  When the driver 
ceases, the inductor resists the change and continues to charge at the expense of the 
capacitor.  Eventually the capacitor is discharged and current flow momentarily ceases.  
The inductor's magnetic field collapses at that point, recharging the capacitor in the 
opposite polarity.  The process continues, back and forth transfer of charge (oscillation) 
until  loses exhaust the circuit (expressed as a time constant).  The driver duration 

determines the amount of charge available to create current flow, as 

ri 2

∫= dti
C

V cC
1 ; of 

course the limits on the integral are the duration of the driving step.  In this case VVC 1= .   
 
The sum total of all of this discussion is that if you choose to approximate an actual small 
duration driver as an amplitude limited )(tδ , your output prediction will be much closer 
to the actual case. 
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Another, and in many ways more satisfying, way of looking at tank currents is to 
visualize the various flow conditions using Kirchhoff's current law.  The only assumption 
we need make is that when current is not flowing from the driver (bear in mind that we 
are modeling with a current driver), little or no current can flow into the driver; i.e., it 
behaves as an open.   
 

 
Case 1:  Initial current flow; reactive components not yet charged. 
 

 
Case 2:  Current flowing from both the driver and the inductor. 
 

 
Case 3:  Current flowing from both the driver and the capacitor. 
 

 
Case 4: Driver off; capacitor discharging into the inductor. 
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Case 5:  Driver off; inductor discharging in to the capacitor. 
 
As the above are the only possible cases of current flow, it is fairly easy to visualize what 
is going on with the driver either on or off.  The majority of the time Cases 4 & 5 
predominate as the driver is generally on only for a small duty cycle. 
 

outV  can also be re-written as 
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As Bell1 would say "FAPP" (For All Practical Purposes) 
 

)1028.6sin(16)( 65.39 tXetV t
out

−≈  
 
Our math predicts a magnitude of 16; that is because the input was modeled by 
manipulating unit steps.  But the input is a 10ns wide pulse that does not have the time 
available to completely charge the circuit (if the circuit completely discharges in 6 time 

constants. it will charge in 6 time constants; recall that Vidt
C

VC 11
≈= ∫ ).  A Fourier 

transform approach would be a better approach in generating a model of the response; but 
Fourier transforms yield a frequency spectrum and herein we concerned with the time 
response.   
 

                                                 
1 John S. Bell, 1928-1990, Physicist extraordinaire 
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Also an instantaneous polarity reversal at  seconds is expected from the model 
because we have assumed an ideal driver with instantaneous rise and fall times.  

Instantaneous "anythings" are generally not possible.  Since 

810−

dt
diLVL =  and ∞=

dt
di  for an 

instantaneous change (a discontinuity, i.e., the driver has two different simultaneous 
values) the model fails.  That must be kept in mind to make the final result meaningful.  
That is another reason why we fall back on FAPP.  FAPP is often an engineer's best 
friend. 
 
A little bit of driving current yields an oftimes magnificent output, sometimes more than 
the circuit is intended for and additional circuitry is required to keep things sane.  
Nevertheless, even a driver that is a timed and sequenced unit step does not yield an 
undistorted picture of reality, but it is much closer than the impulse response. 
 
A look at the time constant indicates that the output has decayed to 36.7% of max at 
about 25ms.  Suppose it is desired that the circuit never be allowed to decay below 90% 
of max.  What is the interval needed between driving impulses?  So 
 

9.5.39 =− τe  
 

9.lnln5.39 =− eτ  
 

ms7.2≈τ  
 

so the circuit is pulsed every 2.7ms. 
 

In the case above, the driver is on for 10ns and cycle time is 2.7ms; so the duty cycle is 
about .0004%.  That is a pretty decent tank. 

 
 

In the above example, remember the time constant is actually 
5.39

1 , as the units on 
1

5.39  

MUST be .  39.5 represents 1−t
L

R
2

, therefore the time constant is 
R
L2  - does this 

expression have units of t ?  Yes, it does. 
 
Not developed in this discussion is the bandwidth of the tank and spectrum of the output.  
Both topics are of critical interest to the analyst and to the designer.  Neither can be 
ignored in practice.  They have been tacitly ignored in this discussion as the intention 
here is to focus on the time response.  Discussions and development of tank bandwidth 
and ability to discriminate against unwanted frequencies will be delayed until a later 
module. 
 
Nevertheless, it is truly the frequency content of the driving function that causes 
sympathetic oscillation in the circuit.  That aspect has been totally ignored in this 

 
19 



Version of:  13 Aug. 2011; Revised 10 Oct. 2011 

discussion as it is not needed in the development of a simple time response.  But as we 
shall see in subsequent modules frequency is a major player, often the 800 pound Gorilla, 
in circuit stability/instability considerations.  
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Transform )(tf  )(sF  
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s
sF )(  

11 )()( tbgtaf +  )()( sbGsaF +
12 t  

2

1
s

 

13 atte −  
( )2

1
as +

 

 
Table 1 

 
*  K is preserved for practical circuit reasons, not for theoretical reasons as ∞∗K is 
approximately equal to ∞  

 
It is very important to understand that to be able transform any  to an ,  
must be reduced to one of the forms so far developed.  If it is not in one of these forms it 
cannot be operated on until it is.  Study the right hand side forms, they identify the left 
hand side.   

)(sF )(tf )(sF
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Appendix A 

Cramer's Rule 
Refresher 

 
This appendix is not intended as a tutorial, but rather as a refresher for those that want a 
reminder of how the process proceeds.   
 
Suppose there is a system of equations representing a simple two loop circuit containing 
two unknowns and two equations, such as 
 

02212

2111

=+
=+

ibia
Vibia in  

 
In the above case  are the unknowns and everything else is known. 21 & ii
 
Then using the notation of Algebra we can re-write these equations as 
 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
02

1

22

11 inV
i
i

ba
ba

 

 
In order to solve for the two unknowns, first the determinant (Det.) is found by 
multiplying the elements of left to right diagonal, and then subtracting the multiplication 
of elements on the right to left diagonal. 
 
Det. =  2121 abba −
 
Next, to find , the rightmost column containing  is substituted for the column 
containing . 

1i 0&inV

21 & aa
 

⎥
⎦

⎤
⎢
⎣

⎡

2

1

0 b
bVin  

 
Then find the determinant of that new matrix. 
 

021 bbVin −  
 
Next divide by the Det., the result is the value of .  So 1i
 

2121

21
1

0
abba

bbV
i in

−
−

=  
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The term  is zero, and is included only for completeness as the driver in the second 
loop is not always zero. 

02b

 
Finally solve for  by substituting  for the column containing . 2i 0&inV 21 & bb
 

⎥
⎦

⎤
⎢
⎣

⎡
02

1

a
Va in  

 
and divide by Det. 
 

2121

21
2

0
abba
aVa

i in

−
−

=  

 
Please bear in mind that the second loop may have a driver and therefore the left hand 
side of the describing equation will not be zero.  Also, there is no constraint on the matrix 
elements to be real, in fact in actual circuitry they are more than often complex.  Also 
because the rules of LaPlace Transform pairs allows addition, the whole set of equations 
may be written in the 's' domain. 
 
Optional:  For a short discussion of why this technique works, see appendix B. 
 
An example; 
 

Z1

Z2

Z3

Z4

i1 i2

Vin

 
 
From the above, 
 

)(0

)(

432221

22211

zzzizi

zizziVin

+++−=

−+=
 

 
The determinant is ( )  or ( ) 2

243221 zzzzzz −+++
 
Det. =  4232413121 zzzzzzzzzz ++++
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Then 
( )

.
02432

1 Det
zzzzV

i in +++
=  

 

and 
( )
.

0 21
2 Det

zVi
i in+
=  

 
Assume:  5,10,10 3241 ===== zzzzVin  
 

Then Det. is  275
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−

−
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Suppose , then  42 ziVout = VVout 8.1=
 
For a three loop circuit, there will be three equations and three unknowns. 
 

Z1

Z2

Z3

Z4

i1 i2

Vin
Z6

Z5

i3

 
 
The procedure for any matrix greater than a 2x2 as in the above example, is extended and 
modified slightly.  In the case of the three loop circuit there a three columns and three 
rows; 
 

( ) ( ) 0322211 izizziVin +−+= ( )  
   ( ) 434322210 zizzzizi −+++−=
   ( ) ( )6543421 00 zzzizii +++−=
 
The determinant matrix will be 
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At this point a modification occurs.  There are three columns, and therefore there must be 
three terms for both the left and right hand diagonals.  A frequent crutch that works is to 
merely copy columns 1 & 2 to the right of the matrix; that yields three complete 
diagonals in each direction.  To extend the rule, an nxn matrix requires n diagonals in 
each direction. 
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the determinant then is 
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As an example, suppose that three equations in three unknown are 
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The matrices are 
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The determinant is 
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3750)15)(5)(5()5)(5)(15()0)(20)(0()5)(5)(0()0)(5)(5()15)(20)(15( =−−−−−−−−−+−−+
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The minus sign on  merely means that it is flowing in a direction opposite to the other 
two. 

3i

 
For matrices greater than three rows by three columns (3x3), the labor goes up 
significantly, and the use of a calculator such as an HP49 or a computer program similar 
to MATLAB is very helpful.  However for those that enjoy the labor the following rules 
are offered:   
 
The determinant is the algebraic sum of all the possible products where: 
 
a.  each product has factors of one element, and only one, from each row and column 
b.  a plus sign is assigned to each product if the number of column inversions is even, 0 
inversions being defined as even. A minus sign is assigned to a  product that has an odd 
number of column inversion. 
 
An inversion, by illustration, is that if the natural order of counting is 1234 and a product 
is formed from columns 1423 then it contains two inversions; to change 1423 to 1234, the 
4 must move two places to the right.  4321 has six inversions as the 4 moves three places, 
the 3 moves two places and the 2 moves one to create 1234. 
 
These rules are simply the procedure used for a 3x3 extended to an nxn.   
 
There are other, equally valid techniques from our slide-rule days, such as Gaussian 
Elimination, Matrix Inversion and the use of Minors, but all in all once you understand 
the foundations of the process the use of a good calculator is incredibly labor and error 
saving.  Of course it is the understanding of these techniques that form the foundations 
for the programming in the calculator's ROM library. 
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Appendix B 
Foundations 

 
Suppose 
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then  and AxPBy −=
B
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=  

 

then Q
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AxPDCx =⎟
⎠
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+  and becomes BQADxDPCBx =−+  

 
which, in turn becomes ( ) DPBQADCBx −=−  
 

or 
BCAD
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−
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=  

 
Using Cramer's rule the matrices for the two initial equations are  
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For those with infinite stamina this procedure can be extended to any number of 
equations that possess the same number in unknowns.  But the author, being a member of 
Lazyhood Incorporated, uses mechanical means once the theory is established. 
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Appendix C 
Common Base Amplifier 

 
 

Consider the following circuit 
 

E C
B

Re

Vin

Vbe
RloadVcb

Vcc

ie

ic

 
                                            
This circuit consists of an NPN transistor, forward biased emitter to base (  and 
reverse biased collector to base ( ).  Typically  is on the order of approximately .7 
volts, so the current through , is  

)beV

beV beV

eR
  

e

in
e R

V
I

7.−
≈  

 
The physics of the transistor are such that the current through the collector and hence 
through  is always .98-.99  (true within the manufacturers operating 
characteristics range for the particular transistor type).  Therefore adjusting  adjusts 

, which in turn controls the load current.  In short 

loadR eI

inV

eI
 

ec II 99.≈  
 
Obviously this makes the current through the load utterly dependent on , which in turn 
is dependent upon the values chosen for    

eI

ine VR & .
 
The above is a very primitive version of a common base amplifier, and design 
considerations of coupling, impedance, bandwidth, emitter resistance, etc., have been 
utterly ignored so as to focus on the current generator effect at the collector.   
 
The most common point of confusion is that if the collector current is 99% of the emitter 
current, what has happened to ohm's law in the collector to base loop.  Nothing actually. 
Kirchhoff's voltage equation for that loop is  
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cbloadecc VRIV +≈  
 

As the transistor is active, and is constrained by it's physics,  adjusts to accommodate 
the voltage law.  

cbV
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Appendix D 
 

 
Resonance is defined to occur when CL XX = .  For a series circuit the total impedance 
is  
 

CLt jXjXR −+  
 
It is clear at resonance the impedance is at minimum and depends only upon . tR
 
In a parallel circuit the above sum is the denominator of the expression of total 
impedance.  Again it is clear that it is a minimum at resonance.  A minimum denominator 
creates a maximum impedance. 
 
As a rule of thumb at resonance: a) a series circuit approaches a short, and b) a parallel 
circuit approaches an open. 
 

Since fLjX L π2= , and 
fC
jX C π2

−
= , at resonance  
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o
o π

π
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12 =  

 
since oof ωπ =2  we can re-write as follows 
 

LCo
12 =ω  

 
an finally 
 

LCo
1

=ω  
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Appendix E 
 
A quadratic has only two possible sets of roots; a.  both real (may be equal or unequal) or 
b.  a complex pair.  Consider the quadratic  
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this roots are 
 

2

4

2

2

LCL
R

L
R

−⎟
⎠
⎞

⎜
⎝
⎛

±−  

 
which leads to  
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when the discriminant is , the roots are real, and when the discriminant < 0 the roots 
are complex and may be re-written conveniently as 
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