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LaPlace Transforms in Design and Analysis of Circuits© 
Part 2 

by Tom Bertenshaw 
 

Basic Circuit Analysis - Series Circuits 
 

Series RC Circuit 
 
 
A series RC circuit is a basic electrical building block.  Frequently these circuits are 
configured to be either a low pass or a high pass filter.  In later modules we will 
investigate the design of active filters, but an understanding of the underlying principles 
is fundamental.  Analysis begins with understanding the role of the transfer function, how 
to develop the transfer function and its utility to predicting the time response of the 
circuit. 
 
Consider the following circuit: 
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and suppose we wish to know the voltage drop across any of the components, and further 
suppose we wish to do so by using transfer functions.   
 
Using Ohm's Law we can write: 
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To identify the transfer function for either component we form the ratio of voltage 
across the component divided by the voltage applied.  For example: 
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or 
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that says the voltage across the resistor equals the derivative of the applied voltage 
divided by the denominator. 
 
It is clear that if the applied voltage is a DC, the voltage across the resistor is 0 as the 
derivative of a constant is 0; in other words all the voltage appears across the capacitor.  
That makes sense because a capacitor presents an open to DC. 
 
Also, please note that the factor  is the "time constant".  Further, this value is 
completely determined by the choice of values for both R & C.   
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Assume that )sin()( tAsVin ω= ,  and since the LaPlace Transform of that sine function is 
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We have now positioned ourselves to predict the output as a function of the input.  In 
the "s" domain, the transfer function times the driver equals the output (not so in the time 
domain, be careful with this, the time domain requires the use of the convolution 
integral). 
 
From Table 1 at the end of this discussion, it is apparent that the driver in Eq. 1 will 
invert to 

)cos( tK ωω  
 

where K  is yet to be determined, and )cos( tωω  is clearly the derivative of )sin( tω . 
 

To completely invert  to , it is first necessary to determine the appropriate 
numerators of a decomposed left side: 
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where  are determined by partial fraction expansion.  The techniques of partial 
fraction expansion can be found in almost any Algebra text, or for convenience, there is a 
short tutorial included here as Appendix A.   
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As an example, from the above let  
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The poles ("poles" are the value(s) that cause the denominator to be zero) of the above 
equation are  & , which requires we re-write as: 3− 5j±
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Multiplying both sides by , and then evaluating at 3+s 3−=s , we get: 
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The two complex denominators on the right hand side do not match any of the pairs in 
Table 1, so they must be rationalized. 
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and that yields (note that ω  was factored from the numerator of the third in anticipation 
of inversion as a sine function in the time domain): 
 

Revised: Aug 13, 2011  3 



 

tetttf 321.2)5sin(68.3)5cos(2.2)( −−+=    3.eq←  
or re-writing: 
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Note that , satisfying the assertion that  will contain a 
function of the derivative of the driver.  A short discussion on obtaining phase angles is 
included in Appendix B. 

)595cos()315sin( 00 −=+ tt )(tf

 
The above procedure is long and tedious and open to error, so let us see if we can find a 
"short cut" method for dealing with solutions of polynomials that contain complex roots 
(sinusoids). 
 
First, merely factor the denominator; 
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Second, multiply both sides by the complex factor, in this case ( )22 5+s ; 
 
Third, set ωjs += , and importantly, factor and isolate ω  from the numerator result: 
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then inverting: 
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The answers are consistent, and the "short cut" is easier.  A purist might reject the short 
cut as being intellectually lazy, but the author is a charter member of that group so we 
will adopt that method as our modus operendii. 
 
Continuing with uncovering the voltage drops across each of the components, we will 
now pursue the drop at the capacitor, of course using the same driver of . )5sin(5 t
 
The transfer function at the capacitor is developed as follows; 
 

⎟
⎠
⎞

⎜
⎝
⎛ +⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛ +=

=

RC
s

s
Rsi

SC
RsisV

sC
sisV

in

C

1)(1)()(

)()(
 

 
Forming the transfer function, then manipulating these expressions to obtain  as a 
function of the driver, we get: 
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)595sin(57.221.2)( 3 ot
C tetV −+= −   4.eq←  

 
Another quick check is that  are  out of phase, as they should be.  As 
proficiency is developed with this form of circuit analysis, speed and accuracy increase 
rapidly, and obtaining quantitative answers for the outputs in the time domain becomes 
far less tedious. 
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The above figure is the sum of the steady state sum of Equations 3 & 4; the voltages 
across the resistor and the capacitor.  Its gratifying that it mirrors the driver, verifying that 
our computations are correct.  

 
The Impulse Response 

 
 
What is the native response of a circuit?  That question interests us because the native 
response is the transient portion of the output (the driver forms the steady state portion of 
the output - )(tδ  or a pulse being an exception as there is no steady state output).  Since 
the transform of 1)( ↔tδ   we will use the impulse as a driver, the output is then the 
native, natural or impulse response i.e.,  
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again for the sake of illustration only, letting 31
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The Step Response 

 
The step response isolates the response of the transfer function to DC.  Like the Impulse 
Response, the output is expressed as the transfer function times the input, in this case a 
unit step, i.e. 
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It is interesting to note the relationship between the impulse and unit step response, both 
mathematically and graphically.  But the real significance is that the impulse response is 
the native time response of the circuit, and the step response is the response to a DC 
driver (or DC component of a driver). 
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The Series RLC Circuit 
 

 
The series RLC circuit is a fundamental building block in circuitry, even though the 
desired circuit response can often be obtained using active circuits.   To understand RLC 
like behavior, as well as to analyze and/or design a circuit to obtain a specific response, it 
is very desirable that a thorough grounding in the fundamentals is well understood.  One 
of basic parameters of electrical design, the circuit resonant frequency, is uncovered by 
understanding RLC behavior.  Series RLC circuits are sometimes referred to as "series 
tank circuits", because they do possess an inherent resonant frequency.  At resonance 
( )  the impedance of the network is at the minimum. 0=− CL jXjX
 
As usual our approach will be via the transfer function.  This approach not only provides 
for a prediction of output in the time domain, but also positions us for analysis and design 
work in the frequency domain, as we shall eventually see in later modules. 
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Circuit voltage is (Kirchhoff's voltage loop): 
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We need to re-arrange the voltage loop expression as it will become the denominator of 
any transfer function and it MUST be in a form compatible with Table 1 for inversion. 
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A nice quadratic!  That is important as a quadratic has either a pair of real roots or a pair 
of complex roots; in either case it is invertible after PFE.  And as we will see as time goes 
on, that this quadratic plays a major role, often the dominant role, in any circuit that the 
solution to the quadratic is complex. 

 
The voltage across the capacitor is (Ohm's law): 
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and across the inductor: 
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and across the resistor: 
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RsIsV R *)()( =  
 

As we have discussed, the ratio of the voltage across any component divided by the 
source voltage, by definition, is the transfer function: 
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for the sake of illustration and to generate examples, assume  
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Lets investigate the impulse response across each of the components.  In general; 
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The roots of this denominator are 25 j±− , so re-writing: 
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You are invited to verify that: 
( ) 452910 22 ++=++ sss  

and that the roots are truly 
25 js ±−=  

 
There a couple of important things to be aware of regarding the denominator.  First if 

, then the roots of the denominator become 0=R 29j± .  That is apparent as the 
denominator in that case becomes: 
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This frequency is commonly denoted as 0ω  and it is the highest frequency the circuit is 
naturally capable of; i.e., it is the circuit's resonant frequency.  The circuit may be driven 
to a higher frequency by an excitation source, but recalling the physics of a coil, the 
higher the frequency is that it is driven by, the more it begins to behave as an open.  You 
can always uncover the resonant frequency by setting the factor on .  Clearly then 01 =s

LC
1  is the resonant frequency.  All these remarks apply only to the case where the 

roots of the quadratic are complex; if they are real there is no resonant frequency.  You 
are invited to verify that if the roots are real, the inverted form becomes 

 tt BeAetf βα ±± ±=)( .
 
In the example above, the frequency is 2 and is commonly denoted as dω , the damped 
frequency ( dω  is always < 0ω , an inspection of the general quadratic will disclose why).  
Notice that in the above denominator once we choose the value for one of the 

components, the values of the others are set by the relationships of 
LCL

R 1& .  In other 

words, we want to design a circuit in which 290 =ω , 2=dω  and 5
2

=
L

R .  Choosing a 

capacitor with a value of 1 farad, requires we choose a coil of 186  mili-henrys and a 
resistor of 1.86 ohms.  Not realistic circuit values for small signal circuits, but they serve 
our purposes as an illustration (for ease of math reasons we have chosen a circuit with an 

0ω  of 5.38 rads/s).  Note that 
L

R
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.assumes the function of the multiplier on t  in the 
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Rt

e 2
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 which, in turn, identifies 
R
L2  as the circuit time constant. 

 

As an exercise, why is the time constant 
R
L2  instead of 

R
L ?  As cursory inspection of the 

way in which the denominator must be arranged to guarantee inversion from the domain 
t, the time domain provides the answer. 

Revised: Aug 13, 2011  11 



 

 
Taking the inverse transforms of the impulse response one at a time, 
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yield an invertible pair; 
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See Appendix B for a Word About Phase Angles. 
 
A quick review of Table 1 shows that  cannot be directly inverted as it stands, and 
addition/subtraction as in the case of  will not resolve the issue.  So, a new rule is 
called for, and it is this: 
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When the numerator is the same order of  as the denominator, long 
division MUST be applied as necessary to obtain a remainder in which the 
denominator is at least one order higher than the numerator. 
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In the above example of , then: )(sVL

                    1 
22 2910 sss ++  

                                      29102 ++ ss  
                                           2910 −− s  

so 

2910
29101)( 2 ++

+
−=

ss
ssVL  

 
this will further devolve to (using addition/subtraction of 21± ): 
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Impulse Response Inductor Voltage
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The above figure fairly well captures the effect that )(tδ  has on the impulse response.  

To amplify the effect of L
Rt

e 2
−

, dω  is arbitrarily increased below, simply to illustrate how 
the exponential decay can dominate the impulse response. 
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To repeat, note that if the factor on  is 0 (means 1s )0=R  then the circuit oscillates at 

29=ω .  Whereas when  the frequency is lower (in this case 2) - and that will be 
true with all oscillating circuits.  When 

0≠R
0=R  the circuit will theoretically oscillate 
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undiminished forever.  But even if we left the resistor out, there is residual resistance in 
the leads (at any temperature above absolute 0) such that there is an RI 2  loss, and no 
matter how slight the loss, oscillations will eventually decay to 0.  In a word; in the real 
world no perpetual motion is allowed.  Arguments concerning absolute zero and quantum 
electrodynamics almost never apply in practice, i.e., Newtonian physics is just fine for 
common use. 
 
Moving on, suppose the above RLC circuit is driven by a )200sin(10 tVin = , then, 
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Division is no longer required as the denominator is now 2 orders higher than the 
numerator.  Nevertheless, a PFE is required in order to invert : )(sVL
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Using the techniques of Appendix A (PFE), and solving for A & B: 
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086.210∠≈B  

and 
)86.2200sin(10)6.432sin(72.)( 5 oot ttetf ++−= −  

 
)(tf  is our prediction of the output given an input of . )200sin(10 t

 
It is important to note that elements of both the impulse response and the driver are 
present in the output.  The impulse response element is the transient response and the 
driver element is the steady state response.  In general, that statement is true across the 
board, i.e., there will always be elements of both the impulse and the driver in the time 
domain output.   
 
In the case above, the transient portion is: 
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ot te 6.432sin(72. 5 −− ) 
 

corresponding to the contribution of the native or impulse response of the circuit to 
excitation.  The steady-state portion of the output is  
 

)86.2200sin(10 ot +  
 
Again, the steady state response is of the same form as the driver, e.g., )200sin( φ±tA  
and will remain until excitation is terminated.  
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In the above graph, the amplitude of the transient portion has been distorted purposefully 
to better identify its contribution to the output.  It should be clear that by the end of the 
second cycle it has fully disappeared. 
 
As an exercise, you are invited to solve for the impulse response for each of the 
components of an RLC series circuit, using the component values as shown.   
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Kirchhoff's voltage loop 
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plugging in values 
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so (here is where you are invited to do the work to find the impulse response); 
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Let's convert  to a sine function: )(tVL
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If we assume a driver of  and then solve for , we get: )5sin(2 t )(tVL
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Because series tank circuits present minimum impedance at resonance, they are useful as 
notch filters to trap for unwanted frequencies.  Of course active filters now perform this 
same function, and those will be discussed in later modules. 
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Table 1 

 
*  K is preserved for practical circuit reasons, not for theoretical reasons as ∞∗K is 
approximately equal to ∞  

 
Table 1 is not all inclusive and other pairs will be examined and added when needed.  But 
for beginning analysis purposes Table 1 is adequate.   

 
It is very important to understand that to be able to transform any  to an , 

 must be reduced to one of the forms so far developed.  If it is not in one of these 
forms it cannot be operated on until it is.  Study the right hand side forms, they identify 
the left hand side.   

)(sF )(tf
)(sF

 
Transforms 12 and 13 are found as follows: 
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ttf =)(  

20

1)(
s

dttesF st == ∫
∞ −   

For transform 13, assume  
 

attetf −=)(  
( )

( )20

1)(
as

dttesF tas

+
== ∫

∞ +−  

 
Finding transform 12 and 13 is a straightforward exercise in integration by parts.   
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Appendix A 
 

Partial Fraction Expansion 
 

Partial Fraction Expansion is a technique to decompose a ratio of polynomials into a sum 
of factors; for example: 

54209
52

2 +
+

+
=

++
+

s
B

s
A

ss
s    ←  Ex. 1 

 
where  are to be determined.  In general, then, BA &
 

nps
N

ps
B

ps
A

sD
sN

+
++

+
+

+
= ........

)(
)(

21

  ←Eq. 1 

 
)(&)( sDsN  are the numerator and denominator polynomials.   through  are the 

roots of the factors ( . is used because these are also the poles, as will be shown in the 
module on Root-Locus - note that there is no restriction on  to be real, it can be and 
often is, complex).  

1p np

ip

ip

 
To solve for any of factor numerators, A  for example, a) multiply both sides of Eq. 1 by 

, b) cancel  from both sides and from the denominator of ( 1ps + ) )( 1ps + A , then c) set 
.  The result looks like this: 1ps −=

 

( ) ( ) A
pppp

pN

n

=
+−+−

−

121

1

.......
)(

 @ 1ps −=  

 
Let's try it on Ex. 1: 
 

( )( )
( )( )

( ) ( )
5
4

4
4

54
524

+
+

+
+
+

=
++
++

s
sB

s
sA

ss
ss  

 
( )

5
4

5
52

+
+

+=
+
+

s
sBA

s
s  

now set  4−=s
 

( ) 0
54

542
+=

+−
+− A  

 
so 3−=A  

 
Following the same procedure for B  
 

Revised: Aug 13, 2011  20 



 

( )( )
( )( )

( ) ( )
5
5

4
5

54
525

+
+

+
+
+

=
++
++

s
sB

s
sA

ss
ss  

 
( ) B
s
sA

s
s

+
+
+

=
+
+

4
5

4
52  

setting , we get: 5−=s
 

( ) B+=
+−
+− 0
45

552  

 
or 5=B  

 
Let's check it: 

4
3

5
5

209
52

2 +
−

+
=

++
+

ssss
s  

 
Comparing the rightside with Table 1 we can see that the solution can now be inverted to 
the time domain (recall, a factor must be in one of the forms in Table 1 to be inverted).  
In fact this solution inverts to: 
 

tt eetf 45 35)( −− −=  
 
Both values of the time constant are a direct function of circuit component values.  It is 
very important to note that multiplication in the 's' domain is not multiplication in the 
time domain. 

 
Checking the solution by cross multiplying the denominators to form the LCD, we have: 
 

209
153205

209
52

22 ++
−−+

=
++

+
ss

ss
ss

s  

 

                              
209

52
2 ++

+
=

ss
s     Q.E.D. 

 
This general procedure is repeated for each non-repeating root regardless of the number.   
 
When the roots are repeated a slight modification is called for.  For example: 
 

( ) ( ) ( ) 12212
43

22 +
+

+
+

+
=

++
−

s
C

s
B

s
A

ss
s  

 
The denominator  must be assumed to be part of the solution because it is a factor 
of the LCD (although 

( 12+s )
B  can be 0).  Finding  are straightforward as in the example 

above, so: 
CA &
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00
1
43

++=
+
− A

s
s    ( )

)(
2)( 2

sD
ssN +

=   ←Eq. 2 

at  we have: ,2−=s
10=A  

finding  C

( )
C

s
s

=
+
−

22
43  

at , we have: 1−=s
7−=C  

 
So far, so good - but what about B ?  The typical procedure is to take the derivative of 
Eq. 2 and evaluate the result at the root value.  For example: 
 

( ) (
( )

)
21

43131
43

+
−−+

=
⎟
⎠
⎞

⎜
⎝
⎛

+
−

s
ss

ds
s
sd

 

evaluating that at  2−=s
7=B  

therefore, 

( ) ( ) ( ) 1
7

2
7

2
10

12
43

22 +
−

+
+

+
=

++
−

sssss
s  

 
Again, we compare the denominators to the forms required in Table 1, and find that: 

 
=)(tf ttt eetetf −−− −+= 7710)( 22  

 
To check the answer we cross multiply the numerators as appropriate and form the LCD. 

 

          
( ) ( )12

43
2 ++
−

=
ss

s  

 
Then there is the case of complex roots, for example: 
 

( )( ) 323211341
43

2 js
C

js
B

s
A

sss
s

−+
+

++
+

+
=

+++
+  

 
Again, using the procedure we have established, evaluated at 1− : 
 

A
ss

s
=

++
+

134
43

2  
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or 1.=A  
 

Now, we will find B  by letting 32 js −−=  
 

( )
( )( ) B

jjj
j

=
−+−−+−−

+−−
3232132

4323  

 
or 48.05. jB +−=  

 
We need not solve for C as the other component of a complex conjugate pair with the 
complex conjugate of B. 
 

( )( ) 32
48.05.

32
48.05.

1
1.

1341
43

2 js
j

js
j

ssss
s

−+
−−

+
++
+−

+
+

=
+++

+  

 
However, the solution above does not match a form in Table 1, so we must find a 
denominator for the complex fractions that matches a transform pair from Table 1.  The 
LCD of the complex pair is: 
 

( ) 9)2(134)32(32 22 ++=++=−+++ sssjsjs  
 

Cross multiplying the numerators of the complex fraction and adjusting to extract the 
necessary numerator for the cosine and sine factors, we end up with: 

 

( )
( )

( )
( )

( ) 222222 32
3)967(.

32
21.

1
1.

32
7.21.

1
1.)(

++
−

++
+

+
+

=
++

−
+

+
=

ss
s

ss
s

s
sF  

 
)(sF  is now easily capable of being inverted: 

 
)3sin(967.)3cos(1.1.)( 22 teteetf ttt −−− −+=  

 
Again, note that although the factors in s domain are multiplicative, they are not in the 
time domain (very important point, particularly for design work - the time domain 
requires the use of the convolution integral; multiplication in the s domain ↔  
convolution in the time domain). 
 
To check, again after cross multiplying the numerators of to re-form the LCD, we 
get: 

)(sF

 

              = ( )( ))1341
43

2 +++
+

sss
s  

 
as it must be, or A, B & C are not correct. 
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Some examples, obtain answers to match those below: 
 

5
1

3
1

1
1

15239
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23
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+
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+++
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( ) 255
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+
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Appendix B 
 

A Word About Phase Angles 
 
Define a 2 space with coordinate axes as shown below: 

cosine axis

sine axis

 
 
Now consider a statement such as: 
 

)sin(5.1)cos( tt ωω +  
 

We will interpret that as 1 unit coincident with the cosine axis and 1.5 units coincident 
with the sine axis.  In other words, it represents two sides of a triangle with an adjacent of 
1.5 units and an opposite of 1 unit.   
 

1 unit

+1.5 units
 

That being the case, the enclosed angle at origin is about , and will re-write the 
above sum as: 

o7.33

)7.33sin(8.1 ot +ω  
 

Consider the sum in the LRC circuit in the body of Part 2: 
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))(2(sin(5.2)2(cos(10)( 5 ttetV t
R −= −  

 
Applying the same rationale: 
 

             

1 unit

-2.5 units  
 
Then as measured from the +sine axis (defined to be , the resultant is: )0o

 
)2.1582sin(9.26 5 ot te +−  
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